
Introduction to Theoretical Computer Science
Note 1 – two registers suffice

In this note, we will prove the statement that two registers are enough.

1 Three into two does go

We start by showing that we can easily encode a three-register machine program into a
two-register machine program, given the three instructions inc, decjz, goto. (We don’t
actually need the clear mentioned in Minsky’s paper, as it’s easily implemented as on
the slides; and in fact we won’t even use it, provided we assume that R1 is initially zero.)

For this, we will use the ‘obvious’ tripling function:

〈x, y, z〉 = 2x3y5z

The reason for this choice is that it is particularly easy to manipulate the three compo-
nents by manipulating the code directly.

The target machine has three registers, which we call T0, T1, T2; our interpreting ma-
chine has two, R0, R1. The principle of the encoding is that R0 always contains 〈T0, T1, T2〉,
while R1 is our work register.

Each instruction of the target machine is translated to a macro of the interpreting
machine; we will now define these macros.

First, consider the instruction inc T0. Incrementing T0 corresponds to multiplying
〈T0, T1, T2〉 by 2:
# r1 is assumed zero

# move double r0 into r1

start: decjz r0 next

inc r1

inc r1

goto start

# move r1 to r0

next: decjz r1 end

inc r0

goto next

# note this leaves r1 zero

Equally easily, we can translate inc T1 and inc T2. The decrement instructions are a
little trickier – to encode decjz T0, dest, we need to divide 〈T0, T1, T2〉 by 2, but back out
and jump if it turns out not to be a multiple of 2. Note, by the way, that R0 can never
contain zero on entry, as this is not a valid triple code.
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# r1 assumed zero

# by repeated subtraction, move half r0 into r1

# if we hit zero at this point, that’s good -

# it means we’ve halved r0

start: decjz r0 next

# if we hit zero here, r0 wasn’t a multiple

# of two, so we need to recover

decjz r0 not2

inc r1

goto start

# move r1 back to r0

next: decjz r1 end

inc r0

goto next

# recovery: need to restore r0

# first undo the dec at start before we jumped here

not2: inc r0

# now add double r1 on to r0;

# when finished, jump to branch target

loop: decjz r1 dest

inc r0

inc r0

goto loop

# note that either way, r1 is zero when we

# leave this macro

Similarly, though rather more tediously, particularly with the recovery, we can write
macros to decrement T1 and T2.

The target goto is translated directly.
Modulo correctness of the above macros, we have now encoded a 3-register machine

into a 2-register machine.
It is obvious that for any given value of n, this encoding can be extended to encode

n-register machines into 2-register machines, and so in some sense we’re done: we’ve
shown two registers are enough to encode any given machine, and so any RM-computable
function can be simulated by a 2-register RM.

It is an interesting quirk that while a 2-register RM can simulate a general RM, and
can therefore compute a suitable encoding of any computing function, it is not true that
a 2-register RM can compute any computable function, in the sense of taking the input
in R0 and leaving the answer in R0. Such simple functions as n2, 2n cannot be computed
(in this sense) by a 2-register machine.
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2 Unbounded register numbers

However, it would be more satisfactory if we had a single encoding that would translate
machines with arbitrary numbers of registers into 2-register machines. This is rather
harder, because it means we have to treat the target register index (i in Ti) as a variable
quantity, instead of hard-wiring each different instance. Moreover, using the arbitrary
extension of the prime-powers pairing function would involve us generating the ith prime
on the fly every time we touched Ti. While this is possible, it’s pretty hideous (and
certainly not obviously doable with two registers).

So in order to sketch the proof, I’ll assume some pairing function 〈, 〉2 : N×N→ N\{0}
(note that 2x3y is such a function), and then define the following coding of sequences:

〈〉= 0

〈x, s〉= 〈x, 〈s〉〉2 where s is a sequence

Hence, extracting the i element of a coded sequence is simply a matter of pulling out the
first component of a pair, i times. Assuming the unpairing function is reasonable, this
can be done with a couple of auxiliary registers.

Similarly, updating the ith element is routine, though a little more tedious. Try writing
the pseudo-code for it, and see how many auxiliary registers you need.

Given that, then the rest of the translation process is very simple: if interpreting
machine R0 holds the coded registers, then target machine instruction inc(i) turns into
load R1 with i
extract Ti into R2, saving 〈T0, . . . , Ti−1〉 in R3 and leaving 〈Ti+1, . . . 〉 in R0

inc (R2)
pack T0, . . . , Ti−1, R2, Ti+1, . . . into R0

The macros are a bit fiddly, especially the re-packing (if you are a Lisp programmer,
you may remember basic exercises that involved a lot of list reversing), but not difficult.

Similarly for decjz and goto.
While I haven’t counted, I’d guess that ten registers are enough to do all that conve-

niently – possibly fewer.
But we wanted just two registers.
No problem! If we can produce an arbitary-register-RM interpreter using ten registers,

we can encode it into a two-register machine using the technique of the previous section.
Note, however, that if we do all this with the primes coding function, the machine has

zilch chance of doing anything useful in the lifetime of the universe. What is the code of
the sequence (2, 2, 2, 2, 2)?

For the purpose of this section, any coding funtion will do, so we can code more
efficiently using the diagonal pairing function (or to be precise, 1 + the diagonal pairing
function).

For the construction of section 1, I don’t know any tupling function that can be
calculated with only one scratch register, and is not exponential in the inputs. I also
don’t know that no such function exists.

I believe that the goto is necessary, in that without it we cannot write a general RM
simulator using just two registers. So far, the proof escapes me.
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