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Universal RMs and Halting Turing Machines

Universality

We’ve seen register machines, a computational model that I
have claimed is universal.

Key Question
Can an RM simulate an RM?

That is, can we write an RM that, given some encoding of a
machine M, written ⌜M⌝, computes the result (if any) of the
machine M?

Firstly, we need an encoding.
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Encoding an RM

We have registers R0 . . .Rm−1 and the program I0 . . . In−1.

Pairing
Recall that pairing functions allow us to pack multiple numbers
⟨a, b⟩ into one number.

⌜INC(i)⌝ = ⟨0, i⟩
⌜DECJZ(i , j)⌝ = ⟨1, i , j⟩
⌜P⌝ = ⟨⌜I0⌝, . . . , ⌜In−1⌝⟩
⌜R⌝ = ⟨R0, . . . ,Rm−1⟩
⌜M⌝ = ⟨⌜P⌝, ⌜R⌝⟩

Exercise: Write an RM program that, given such an encoding,
computes its result, if any (very tedious but achievable).
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Halting

The Halting Problem
Given an RM encoding ⌜M⌝, can we write a program to
determine if the simulated machine halts or not?

Suppose H is such an RM, which takes a machine coding
⌜M⌝ in R0 and halts with 1 if M halts, and halts with 0 if M
doesn’t halt.
Construct a new machine L = (PL,R0 . . . ) which, given a
program ⌜P⌝, runs H on [the program with itself as input],
i.e. the machine (P, ⌜P⌝), and loops iff it halts.
What happens if we run L with input PL?

Contradiction!
If L halts on ⌜PL⌝ that means that H says that (PL, ⌜PL⌝) loops.
If L loops on ⌜PL⌝ that means that H says that (PL, ⌜PL⌝) halts.
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Diagonalization

We saw Cantor’s proof of the uncountability of infinite-length
binary strings in the last lecture. This proof is another example
of the same principle, which is called diagonalization.

Example (Gödel’s first incompleteness theorem)
If a logic is capable of expressing basic (Peano) arithmetic, we
can encode the provability of statements in the logic itself.
Then, by the same diagonalisation trick, we can encode the
statement “This statement is not provable” in the logic. If it is
true, then it is not provable and thus the logic is incomplete. If
it is false, then it is provable and thus the logic is inconsistent.
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Consequences

We have sketched an argument that there are some programs
that cannot be decided by register machines.

But what about other machines?
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Turing Machines Reprisal

Recall a Turing Machine from prior courses. It is a machine
with finite control, like an NFA or PDA, but with access to an
unbounded tape t0t1 . . . for storage. In each transition, we
read and write to the tape, and move the tape head left or right.

Definition
A Turing Machine is a 7-tuple

(
Q,Σ,Γ, δ, q0, qaccept, qreject

)
:

Q : states
Σ : input symbols
Γ ⊇ Σ : tape symbols, including a blank symbol ⊔.
δ : Q × Γ → Q × Γ × {−1,+1}
q0, qaccept, qreject ∈ Q : start, accept, reject states.

Exercise: Construct a TM to recognise {0n1n2n | n ∈ N}
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Programming Turing Machines

More examples are given in Sipser, ch. 3.

Question
How do RMs compare to TMs?

I claim they are equivalent in power. How would we
demonstrate this?

Exercise: Design a TM to simulate an RM
Exercise: Design a RM to simulate an TM

Upshot
The halting argument applies to TMs just as to RMs!
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Extensions to Turing Machines

Do these modifications affect the expressivity of the machine?
Adding the ability to stay put, i.e.:

δ : Q × Γ → Q × Γ × {−1, 0,+1}

Making the tape infinite in both directions?
Restricting to only two symbols?
Allowing multiple tapes?
Allowing non-deterministic TMs? i.e.:

δ : Q × Γ → P(Q × Γ × {−1,+1})

NO
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Summary
We have found one problem (halting) that we cannot compute
in either RMs or TMs.

The Church-Turing Thesis
Any problem is computable by any model of computation iff it
is computable by a Turing Machine.

Confirmed for: RMs, TMs, λ-calculus, combinator calculus,
general recursive functions, pointer machines, counter
machines, cellular automata, queue automata, enzyme-based
DNA computers etc. etc. etc.

This means that for any model of computation we can think of,
there are limits to what we can compute. Some problems are
fundamentally uncomputable by any means. More on this next
week.
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