
Introduction to Theoretical Computer
Science

Lecture 2: Regular Languages

Dr. Liam O’Connor
University of Edinburgh
Semester 1, 2023/2024



Regular Expressions

Recall..

DFAs, NFAs and ε-NFAs all recognise the same class of
languages, called the regular languages. They are equal in
expressive power, although some representations (NFAs) are
more compact than others (DFAs).



Regular Expressions

Closure Properties

Definition
The union of two languages L1 and L2, written L1 ∪ L2, is the
language that includes all strings of L1 and all strings of L2.

Are the regular languages closed under union?

That is, if we have two regular languages L1 and L2, is L1 ∪ L2
also regular?
Exercise: Prove this.



Regular Expressions

Closure Properties

Definition
The sequential composition of two languages L1 and L2, written
L1L2, is the language of strings that consist of a string in L1
followed by a string in L2.

L1L2 = {vw | v ∈ L1,w ∈ L2}

Are the regular languages closed under sequential
composition?

That is, if we have two regular languages L1 and L2, is L1L2 also
regular?
Exercise: Prove this.



Regular Expressions

Closure Properties

Notation
Similarly to arithmetic, define L0 as {ε} and Ln+1 = LLn.

Definition
The Kleene closure of a language L, written L∗, is the language
of strings that consist wholly of zero or more strings in L.

L∗ =
⋃
i∈N

Li

(n.b: in computer science, 0 ∈ N)

Are the regular languages closed under Kleene closure?

Exercise: Prove this.



Regular Expressions

Regular Expressions

Regular expressions are an algebraic notation for regular
languages. Many of you will have already used (some variant
of) regular expressions in your text editors.

Syntax Semantics
a JaK = {a} (a ∈ Σ)
∅ J∅K = ∅
ε JεK = {ε}
R1 ∪ R2 JR1 ∪ R2K = JR1K ∪ JR2K
R1 ◦ R2 JR1 ◦ R2K = JR1KJR2K
R∗ JR∗K = JRK∗



Regular Expressions

Regular Expressions

The notation used for regexes here may differ from the
“regular” expressions you may have seen in text editors.
Please note that sometimes these editors contain extensions
that recognise non-regular languages, so intuitions from text
editors may not apply here.

Questions

How do we write “at least one 0”? What about “at least
one 0 and at least one 1?”
How do we write R+ = R1 ∪ R2 ∪ R3 ∪ · · · using existing
operators?
How do we write R?, the optional R , using existing
operators?



Regular Expressions

Regular Expressions vs Finite Automata

Regular expressions exactly characterise the regular
languages, just as finite automata do. This means that every
regular language can be represented as a regular expression.

How do we prove this?

RE→ DFA – apply the constructions used in our closure
proofs, then the subset construction.
DFA→ RE – convert to a generalised NFA, then reduce to a
single transition.

A note
The DFAs we get from our RE→ DFA translation are not very
space-efficient. Most implementations use more advanced
techniques to minimise the DFA.



Regular Expressions

Generalised NFAs

Definition
A generalised NFA, or GNFA, is an NFA where:

Transitions have regular expressions on them instead of
symbols.
There is only one unique final state.
The transition relation is full, except that the initial state
has no incoming transitions, and the final state has no
outgoing transitions.

(n.b: transitions can be labelled with ∅)

What do we need to do to convert a DFA to a GNFA?



Regular Expressions

DFA to GNFA
1 Add a new start state, connect via ε moves to the old one.
2 Add a new final state, connect via ε moves from the old

final state(s).
3 If two states q0 and q1 have two transitions between them

q0
a−→ q1 and q0

b−→ q1, replace them with q0
a ∪ b−−−→ q1.

4 Introduce ∅-labelled transitions where needed to make
the transition relation full.

q0 q1

q2

1
0

1
0

0
1



Regular Expressions

GNFA to RE

We will eliminate each of the inner states of the GNFA one by
one. When all of them are gone, only the initial and final state
will remain, with one transition between them. The label on
this transition will be our regular expression.

q0

qrip

q1 q0

qrip

q1

R1 R3

R4

R2

R4 ∪ R1R∗
2R3

Exercise: Let’s reduce our example to a single RE.


	Regular Expressions

