
Introduction to Theoretical Computer
Science

Lecture 17: Information and Descriptive Complexity

Dr. Liam O’Connor
LFCS, University of Edinburgh

CECS, Australian National University
Semester 1, 2023/2024

Defining Information Measuring Information Compressibility Computability Results

Informative Examples
Consider the following two binary strings:

Example

A = 01010101010101010101010101010101010101
B = 11100111100000111011100001111001111001

Which of A and B contains more information?

Applying Compression
The simplest compression algorithm in the world is run-length
encoding. Applying that gives us:

A = 0111011101110111011101110111 . . .
B = 13021405130113041402140211

Now B is shorter! But a smarter compression algorithm could
represent A as [01]19.

Defining Information Measuring Information Compressibility Computability Results

Informative Examples
Consider the following two binary strings:

Example

A = 01010101010101010101010101010101010101
B = 11100111100000111011100001111001111001

Which of A and B contains more information?

Applying Compression
The simplest compression algorithm in the world is run-length
encoding. Applying that gives us:

A = 0111011101110111011101110111 . . .
B = 13021405130113041402140211

Now B is shorter!

But a smarter compression algorithm could
represent A as [01]19.

Defining Information Measuring Information Compressibility Computability Results

Informative Examples
Consider the following two binary strings:

Example

A = 01010101010101010101010101010101010101
B = 11100111100000111011100001111001111001

Which of A and B contains more information?

Applying Compression
The simplest compression algorithm in the world is run-length
encoding. Applying that gives us:

A = 0111011101110111011101110111 . . .
B = 13021405130113041402140211

Now B is shorter! But a smarter compression algorithm could
represent A as [01]19.

Defining Information Measuring Information Compressibility Computability Results

Minimal Length Descriptions

Definition
A description of a binary string s is itself a binary string ⟨M,w⟩
encoding a pair of Turing machine M and input w , such that
when M is executed on w it will output s.

One subtlety is that we cannot just use any pairing function
⟨·, ·⟩ here, but instead must use one that produces the shortest
possible strings.

Pairing
We define ⟨M,w⟩ to be the string ⌜M⌝w , that is, the binary
encoding of the machine M appended to the string w . The
encoding ⌜M⌝ is basically standard, but with some kind of
delimiter (see later)

Defining Information Measuring Information Compressibility Computability Results

Minimal Length Descriptions

Definition
A description of a binary string s is itself a binary string ⟨M,w⟩
encoding a pair of Turing machine M and input w , such that
when M is executed on w it will output s.

One subtlety is that we cannot just use any pairing function
⟨·, ·⟩ here, but instead must use one that produces the shortest
possible strings.

Pairing
We define ⟨M,w⟩ to be the string ⌜M⌝w , that is, the binary
encoding of the machine M appended to the string w . The
encoding ⌜M⌝ is basically standard, but with some kind of
delimiter (see later)

Defining Information Measuring Information Compressibility Computability Results

Kolmogorov Complexity

Definition
The descriptive complexity K (s) of a string s is the length of the
minimal description of s,

i.e., the length of the shortest string
encoding ⟨M,w⟩ such that the machine M run on input w
produces s.

This definition is relatively robust with respect to the type and
encoding of our machine M: it differs only by a constant factor.

Theorem

∃c .∀s. K (s) ≤ |s|+ c

Proof: Consider the Turing machine M that immediately halts.
Our c can just be the length of ⌜M⌝.

Defining Information Measuring Information Compressibility Computability Results

Kolmogorov Complexity

Definition
The descriptive complexity K (s) of a string s is the length of the
minimal description of s, i.e., the length of the shortest string
encoding ⟨M,w⟩ such that the machine M run on input w
produces s.

This definition is relatively robust with respect to the type and
encoding of our machine M: it differs only by a constant factor.

Theorem

∃c .∀s. K (s) ≤ |s|+ c

Proof: Consider the Turing machine M that immediately halts.
Our c can just be the length of ⌜M⌝.

Defining Information Measuring Information Compressibility Computability Results

Kolmogorov Complexity

Definition
The descriptive complexity K (s) of a string s is the length of the
minimal description of s, i.e., the length of the shortest string
encoding ⟨M,w⟩ such that the machine M run on input w
produces s.

This definition is relatively robust with respect to the type and
encoding of our machine M: it differs only by a constant factor.

Theorem

∃c .∀s. K (s) ≤ |s|+ c

Proof: Consider the Turing machine M that immediately halts.
Our c can just be the length of ⌜M⌝.

Defining Information Measuring Information Compressibility Computability Results

Kolmogorov Complexity

Definition
The descriptive complexity K (s) of a string s is the length of the
minimal description of s, i.e., the length of the shortest string
encoding ⟨M,w⟩ such that the machine M run on input w
produces s.

This definition is relatively robust with respect to the type and
encoding of our machine M: it differs only by a constant factor.

Theorem

∃c .∀s. K (s) ≤ |s|+ c

Proof: Consider the Turing machine M that immediately halts.
Our c can just be the length of ⌜M⌝.

Defining Information Measuring Information Compressibility Computability Results

Kolmogorov Complexity

Definition
The descriptive complexity K (s) of a string s is the length of the
minimal description of s, i.e., the length of the shortest string
encoding ⟨M,w⟩ such that the machine M run on input w
produces s.

This definition is relatively robust with respect to the type and
encoding of our machine M: it differs only by a constant factor.

Theorem

∃c .∀s. K (s) ≤ |s|+ c

Proof: Consider the Turing machine M that immediately halts.
Our c can just be the length of ⌜M⌝.

Defining Information Measuring Information Compressibility Computability Results

Some Theorems

Given a string s, how much information has ss relative to s?

Theorem
The string ss has not much more information than s:

∃c .∀s. K (ss) ≤ K (s) + c

Proof: Consider the machine M that takes as input ⟨N,w⟩,
runs N on w . Once N outputs the string s, M outputs ss.
Let d be the minimal description of s, then a description of ss is
⟨M, d⟩, whose length is K (s) + c

Defining Information Measuring Information Compressibility Computability Results

Some Theorems

Given a string s, how much information has ss relative to s?

Theorem
The string ss has not much more information than s:

∃c .∀s. K (ss) ≤ K (s) + c

Proof: Consider the machine M that takes as input ⟨N,w⟩,
runs N on w . Once N outputs the string s, M outputs ss.
Let d be the minimal description of s, then a description of ss is
⟨M, d⟩, whose length is K (s) + c

Defining Information Measuring Information Compressibility Computability Results

Some Theorems

Given a string s, how much information has ss relative to s?

Theorem
The string ss has not much more information than s:

∃c .∀s. K (ss) ≤ K (s) + c

Proof: Consider the machine M that takes as input ⟨N,w⟩,
runs N on w . Once N outputs the string s, M outputs ss.
Let d be the minimal description of s, then a description of ss is
⟨M, d⟩, whose length is K (s) + c

Defining Information Measuring Information Compressibility Computability Results

Returning to Pairing
What’s K (xy) for strings x , y?

Is it ≤ K (x) + K (y) + c?

No
We can’t just concatenate descriptions, as we need to know
unambiguously when the description of x ends and the
description of y begins.

So: The length of a pair ⟨x , y⟩ depends on our pairing method.

Sipser’s solution
Double every bit in x , and use 01 as a delimiter. Then:

K (xy) ≤ 2K (x) + K (y) + c

By first storing the length of the desc. of x with doubled bits:
K (xy) ≤ 2 log2(K (x)) + K (x) + K (y) + c

Defining Information Measuring Information Compressibility Computability Results

Returning to Pairing
What’s K (xy) for strings x , y? Is it ≤ K (x) + K (y) + c?

No
We can’t just concatenate descriptions, as we need to know
unambiguously when the description of x ends and the
description of y begins.

So: The length of a pair ⟨x , y⟩ depends on our pairing method.

Sipser’s solution
Double every bit in x , and use 01 as a delimiter. Then:

K (xy) ≤ 2K (x) + K (y) + c

By first storing the length of the desc. of x with doubled bits:
K (xy) ≤ 2 log2(K (x)) + K (x) + K (y) + c

Defining Information Measuring Information Compressibility Computability Results

Returning to Pairing
What’s K (xy) for strings x , y? Is it ≤ K (x) + K (y) + c?

No
We can’t just concatenate descriptions, as we need to know
unambiguously when the description of x ends and the
description of y begins.

So: The length of a pair ⟨x , y⟩ depends on our pairing method.

Sipser’s solution
Double every bit in x , and use 01 as a delimiter. Then:

K (xy) ≤ 2K (x) + K (y) + c

By first storing the length of the desc. of x with doubled bits:
K (xy) ≤ 2 log2(K (x)) + K (x) + K (y) + c

Defining Information Measuring Information Compressibility Computability Results

Returning to Pairing
What’s K (xy) for strings x , y? Is it ≤ K (x) + K (y) + c?

No
We can’t just concatenate descriptions, as we need to know
unambiguously when the description of x ends and the
description of y begins.

So: The length of a pair ⟨x , y⟩ depends on our pairing method.

Sipser’s solution
Double every bit in x , and use 01 as a delimiter. Then:

K (xy) ≤ 2K (x) + K (y) + c

By first storing the length of the desc. of x with doubled bits:
K (xy) ≤ 2 log2(K (x)) + K (x) + K (y) + c

Defining Information Measuring Information Compressibility Computability Results

Returning to Pairing
What’s K (xy) for strings x , y? Is it ≤ K (x) + K (y) + c?

No
We can’t just concatenate descriptions, as we need to know
unambiguously when the description of x ends and the
description of y begins.

So: The length of a pair ⟨x , y⟩ depends on our pairing method.

Sipser’s solution
Double every bit in x , and use 01 as a delimiter. Then:

K (xy) ≤ 2K (x) + K (y) + c

By first storing the length of the desc. of x with doubled bits:
K (xy) ≤ 2 log2(K (x)) + K (x) + K (y) + c

Defining Information Measuring Information Compressibility Computability Results

Compressibility

Definition
A string s is incompressible if K (s) ≥ |s|.
Intuitively, these are strings s that can only be described by the
program “print s”.

Theorem. Incompressible strings of every length exist.

Proof
There are 2n binary strings of length n. The number of
descriptions shorter than n is at most:

n−1∑
i=0

2i = 2n − 1

Thus there is at least one string not described by any of these.

Defining Information Measuring Information Compressibility Computability Results

Compressibility

Definition
A string s is incompressible if K (s) ≥ |s|.
Intuitively, these are strings s that can only be described by the
program “print s”.

Theorem. Incompressible strings of every length exist.

Proof
There are 2n binary strings of length n. The number of
descriptions shorter than n is at most:

n−1∑
i=0

2i = 2n − 1

Thus there is at least one string not described by any of these.

Defining Information Measuring Information Compressibility Computability Results

Compressibility

Definition
A string s is incompressible if K (s) ≥ |s|.
Intuitively, these are strings s that can only be described by the
program “print s”.

Theorem. Incompressible strings of every length exist.

Proof
There are 2n binary strings of length n. The number of
descriptions shorter than n is at most:

n−1∑
i=0

2i = 2n − 1

Thus there is at least one string not described by any of these.

Defining Information Measuring Information Compressibility Computability Results

Tiny fractions
There is at least one incompressible string of any size.

In fact
The vast majority of strings are incompressible.

Theorem
The fraction of strings of size n that are generated by
descriptions smaller than m < n is at most 2m−n.

Proof: There are 2n strings of size n, and at most 2m − 1
descriptions smaller than m. Even if every one of these
descriptions produces a string of size n, at most a fraction:

2m − 1
2n <

2m

2n = 2m−n

of strings of size n can be computed by these descriptions.

Defining Information Measuring Information Compressibility Computability Results

Tiny fractions
There is at least one incompressible string of any size.

In fact
The vast majority of strings are incompressible.

Theorem
The fraction of strings of size n that are generated by
descriptions smaller than m < n is at most 2m−n.

Proof: There are 2n strings of size n, and at most 2m − 1
descriptions smaller than m. Even if every one of these
descriptions produces a string of size n, at most a fraction:

2m − 1
2n <

2m

2n = 2m−n

of strings of size n can be computed by these descriptions.

Defining Information Measuring Information Compressibility Computability Results

Tiny fractions
There is at least one incompressible string of any size.

In fact
The vast majority of strings are incompressible.

Theorem
The fraction of strings of size n that are generated by
descriptions smaller than m < n is at most 2m−n.

Proof: There are 2n strings of size n, and at most 2m − 1
descriptions smaller than m. Even if every one of these
descriptions produces a string of size n, at most a fraction:

2m − 1
2n <

2m

2n = 2m−n

of strings of size n can be computed by these descriptions.

Defining Information Measuring Information Compressibility Computability Results

Tiny fractions
There is at least one incompressible string of any size.

In fact
The vast majority of strings are incompressible.

Theorem
The fraction of strings of size n that are generated by
descriptions smaller than m < n is at most 2m−n.

Proof: There are 2n strings of size n, and at most 2m − 1
descriptions smaller than m.

Even if every one of these
descriptions produces a string of size n, at most a fraction:

2m − 1
2n <

2m

2n = 2m−n

of strings of size n can be computed by these descriptions.

Defining Information Measuring Information Compressibility Computability Results

Tiny fractions
There is at least one incompressible string of any size.

In fact
The vast majority of strings are incompressible.

Theorem
The fraction of strings of size n that are generated by
descriptions smaller than m < n is at most 2m−n.

Proof: There are 2n strings of size n, and at most 2m − 1
descriptions smaller than m. Even if every one of these
descriptions produces a string of size n, at most a fraction:

2m − 1
2n <

2m

2n = 2m−n

of strings of size n can be computed by these descriptions.

Defining Information Measuring Information Compressibility Computability Results

Example

Example
Consider a string of eight million bits (roughly 1MB). Assuming
all strings are equally likely, what’s the probability that this
string could be compressed by at least 0.01%?

Solution: A compression of 0.01% would mean a description
with 7920000 bits, so at most a fraction

27920000−8000000 = 2−800

of strings of size 1MB can be compressed by 0.01%.

Compare
Pick one of the 200 billion galaxies in the observable universe,
pick one of its billion stars, pick one of its atoms, then pick one
of the protons of that atom. The chances that you and your
neighbour guessed the same proton is roughly 2−272.

Defining Information Measuring Information Compressibility Computability Results

Example

Example
Consider a string of eight million bits (roughly 1MB). Assuming
all strings are equally likely, what’s the probability that this
string could be compressed by at least 0.01%?

Solution: A compression of 0.01% would mean a description
with 7920000 bits, so at most a fraction

27920000−8000000 = 2−800

of strings of size 1MB can be compressed by 0.01%.

Compare
Pick one of the 200 billion galaxies in the observable universe,
pick one of its billion stars, pick one of its atoms, then pick one
of the protons of that atom. The chances that you and your
neighbour guessed the same proton is roughly 2−272.

Defining Information Measuring Information Compressibility Computability Results

Example

Example
Consider a string of eight million bits (roughly 1MB). Assuming
all strings are equally likely, what’s the probability that this
string could be compressed by at least 0.01%?

Solution: A compression of 0.01% would mean a description
with 7920000 bits, so at most a fraction

27920000−8000000 = 2−800

of strings of size 1MB can be compressed by 0.01%.

Compare
Pick one of the 200 billion galaxies in the observable universe,
pick one of its billion stars, pick one of its atoms, then pick one
of the protons of that atom. The chances that you and your
neighbour guessed the same proton is roughly 2−272.

Defining Information Measuring Information Compressibility Computability Results

What’s going on?

We have seen in our use of computers that many files we use
every day (images, videos, documents) are extremely
compressible.

Why?
Humans are not interested in random noise.

Incompressible strings are also called random, and descriptive
complexity is proportional to entropy.

Similarly, the vast majority of functions are uncomputable, but
almost all functions we care about are computable.

Defining Information Measuring Information Compressibility Computability Results

What’s going on?

We have seen in our use of computers that many files we use
every day (images, videos, documents) are extremely
compressible.

Why?
Humans are not interested in random noise.

Incompressible strings are also called random, and descriptive
complexity is proportional to entropy.

Similarly, the vast majority of functions are uncomputable, but
almost all functions we care about are computable.

Defining Information Measuring Information Compressibility Computability Results

What’s going on?

We have seen in our use of computers that many files we use
every day (images, videos, documents) are extremely
compressible.

Why?
Humans are not interested in random noise.

Incompressible strings are also called random, and descriptive
complexity is proportional to entropy.

Similarly, the vast majority of functions are uncomputable, but
almost all functions we care about are computable.

Defining Information Measuring Information Compressibility Computability Results

Universal Probability

Assume that the complete works of Shakespeare is one million
bits long1. The probability that a monkey typing at a typewriter
produces the complete works of Shakespeare is about:

ptypewriter ≈ 2−1000000

If the monkey is at a computer, however, we only need it to
input a program that will produce the works of Shakespeare:

pcomputer ≈ K (Shakespeare)

Suppose that K (Shakespeare) = 250000 bits, then the monkey
is 2750000 times more likely to produce the works of
Shakespeare on a computer!
Upshot: Random input is more interesting to a computer than
to a typewriter.

1This is a massive underestimate. It is actually around 5MB

Defining Information Measuring Information Compressibility Computability Results

Universal Probability

Assume that the complete works of Shakespeare is one million
bits long1. The probability that a monkey typing at a typewriter
produces the complete works of Shakespeare is about:

ptypewriter ≈ 2−1000000

If the monkey is at a computer, however, we only need it to
input a program that will produce the works of Shakespeare:

pcomputer ≈ K (Shakespeare)

Suppose that K (Shakespeare) = 250000 bits, then the monkey
is 2750000 times more likely to produce the works of
Shakespeare on a computer!
Upshot: Random input is more interesting to a computer than
to a typewriter.

1This is a massive underestimate. It is actually around 5MB

Defining Information Measuring Information Compressibility Computability Results

Universal Probability

Assume that the complete works of Shakespeare is one million
bits long1. The probability that a monkey typing at a typewriter
produces the complete works of Shakespeare is about:

ptypewriter ≈ 2−1000000

If the monkey is at a computer, however, we only need it to
input a program that will produce the works of Shakespeare:

pcomputer ≈ K (Shakespeare)

Suppose that K (Shakespeare) = 250000 bits, then the monkey
is 2750000 times more likely to produce the works of
Shakespeare on a computer!
Upshot: Random input is more interesting to a computer than
to a typewriter.

1This is a massive underestimate. It is actually around 5MB

Defining Information Measuring Information Compressibility Computability Results

Berry’s Paradox

Is the set of incompressible strings decidable?

Theorem
No. Assume that it is decidable. Then we could write a
machine M that, given a number n as input computes:

for s ∈ {0, 1}n :
if IsIncompressible(s) then

output s;halt

Now ⟨M, n⟩ is a description of an incompressible string of size
n, but the length of ⟨M, n⟩ is just ⌜M⌝ (a constant) + log2 n. We
have a paradox! Thus the set of incompressible strings is not
decidable.

Defining Information Measuring Information Compressibility Computability Results

Berry’s Paradox

Is the set of incompressible strings decidable?

Theorem
No. Assume that it is decidable. Then we could write a
machine M that, given a number n as input computes:

for s ∈ {0, 1}n :
if IsIncompressible(s) then

output s;halt

Now ⟨M, n⟩ is a description of an incompressible string of size
n, but the length of ⟨M, n⟩ is just ⌜M⌝ (a constant) + log2 n. We
have a paradox! Thus the set of incompressible strings is not
decidable.

Defining Information Measuring Information Compressibility Computability Results

Berry’s Paradox

Is the set of incompressible strings decidable?

Theorem
No. Assume that it is decidable. Then we could write a
machine M that, given a number n as input computes:

for s ∈ {0, 1}n :
if IsIncompressible(s) then

output s;halt

Now ⟨M, n⟩ is a description of an incompressible string of size
n, but the length of ⟨M, n⟩ is just ⌜M⌝ (a constant) + log2 n.

We
have a paradox! Thus the set of incompressible strings is not
decidable.

Defining Information Measuring Information Compressibility Computability Results

Berry’s Paradox

Is the set of incompressible strings decidable?

Theorem
No. Assume that it is decidable. Then we could write a
machine M that, given a number n as input computes:

for s ∈ {0, 1}n :
if IsIncompressible(s) then

output s;halt

Now ⟨M, n⟩ is a description of an incompressible string of size
n, but the length of ⟨M, n⟩ is just ⌜M⌝ (a constant) + log2 n. We
have a paradox! Thus the set of incompressible strings is not
decidable.

Defining Information Measuring Information Compressibility Computability Results

Berry’s Paradox
Is the function K computable?

Theorem
No, by the same reasoning. Assume that K is computable.
Then we could write a machine M that, given w , computes:

for i ∈ N :

for s ∈ {0, 1}i :
if K (s) > |⟨M,w⟩| then

output s;halt

In English, this is essentially:

“Output the shortest string which can only be described by
programs bigger than this one”.

This is a paradox! Thus K is not computable.
We could also do a proof by reduction from the previous incompressibility problem.

Defining Information Measuring Information Compressibility Computability Results

Berry’s Paradox
Is the function K computable?

Theorem
No, by the same reasoning. Assume that K is computable.
Then we could write a machine M that, given w , computes:

for i ∈ N :

for s ∈ {0, 1}i :
if K (s) > |⟨M,w⟩| then

output s;halt

In English, this is essentially:

“Output the shortest string which can only be described by
programs bigger than this one”.

This is a paradox! Thus K is not computable.
We could also do a proof by reduction from the previous incompressibility problem.

Defining Information Measuring Information Compressibility Computability Results

Berry’s Paradox
Is the function K computable?

Theorem
No, by the same reasoning. Assume that K is computable.
Then we could write a machine M that, given w , computes:

for i ∈ N :

for s ∈ {0, 1}i :
if K (s) > |⟨M,w⟩| then

output s;halt

In English, this is essentially:

“Output the shortest string which can only be described by
programs bigger than this one”.

This is a paradox! Thus K is not computable.
We could also do a proof by reduction from the previous incompressibility problem.

Defining Information Measuring Information Compressibility Computability Results

One last Theorem

Theorem
Any computably enumerable set of incompressible strings is
finite.

Proof: Let I = {x | K (x) ≥ |x |}. Assume that S is a computably
enumerable infinite subset of I .

Define h(n) = first enumerated string in S of length ≥ n
Then, h is computable by a machine M.

We know:
K (h(n)) ≥ |h(n)| ≥ n by the definition of I .
K (h(n)) ≤ |⟨M, n⟩| ≤ log2 n + c

This is a contradiction as n > log2 n + c for large enough n.

Defining Information Measuring Information Compressibility Computability Results

One last Theorem

Theorem
Any computably enumerable set of incompressible strings is
finite.

Proof: Let I = {x | K (x) ≥ |x |}. Assume that S is a computably
enumerable infinite subset of I .

Define h(n) = first enumerated string in S of length ≥ n
Then, h is computable by a machine M.

We know:
K (h(n)) ≥ |h(n)| ≥ n by the definition of I .
K (h(n)) ≤ |⟨M, n⟩| ≤ log2 n + c

This is a contradiction as n > log2 n + c for large enough n.

Defining Information Measuring Information Compressibility Computability Results

One last Theorem

Theorem
Any computably enumerable set of incompressible strings is
finite.

Proof: Let I = {x | K (x) ≥ |x |}. Assume that S is a computably
enumerable infinite subset of I .

Define h(n) = first enumerated string in S of length ≥ n
Then, h is computable by a machine M.

We know:
K (h(n)) ≥ |h(n)| ≥ n by the definition of I .
K (h(n)) ≤ |⟨M, n⟩| ≤ log2 n + c

This is a contradiction as n > log2 n + c for large enough n.

Defining Information Measuring Information Compressibility Computability Results

One last Theorem

Theorem
Any computably enumerable set of incompressible strings is
finite.

Proof: Let I = {x | K (x) ≥ |x |}. Assume that S is a computably
enumerable infinite subset of I .

Define h(n) = first enumerated string in S of length ≥ n
Then, h is computable by a machine M.

We know:
K (h(n)) ≥ |h(n)| ≥ n by the definition of I .
K (h(n)) ≤ |⟨M, n⟩| ≤ log2 n + c

This is a contradiction as n > log2 n + c for large enough n.

Defining Information Measuring Information Compressibility Computability Results

One last Theorem

Theorem
Any computably enumerable set of incompressible strings is
finite.

Proof: Let I = {x | K (x) ≥ |x |}. Assume that S is a computably
enumerable infinite subset of I .

Define h(n) = first enumerated string in S of length ≥ n
Then, h is computable by a machine M.

We know:
K (h(n)) ≥ |h(n)| ≥ n by the definition of I .
K (h(n)) ≤ |⟨M, n⟩| ≤ log2 n + c

This is a contradiction as n > log2 n + c for large enough n.

	Defining Information
	Measuring Information
	Compressibility
	Computability Results

