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Log Space Complexity

Logarithmic Space

Definition

L = SPACE(log n) NL = NSPACE(log n)

where SPACE(f (n)) (resp. NSPACE(f (n))) are the classes of
problems decidable in f (n)-bounded space by a deterministic (resp.
non-deterministic) Turing machine.

How can a Turing machine have a sublinear space bound?

Revised Bounded Turing Machine
Define a f (n)-space-bounded Turing machine with two tapes:

1 the input tape is read-only, and just contains the input of
size n.

2 the working tape, which is read-write and bounded by f (n).
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Log Space Complexity

Problems in L

Example
{0k1k | k ∈ N} ∈ L Why?

Example
PATH = {⟨G , s, t⟩ | t reachable from s in directed graph G} ∈ P

Is it in L?
We don’t know.
Undirected version is in L (Reingold 2005), but the proof
is not easy (because SL = L).
What about NL?



Log Space Complexity

Problems in L

Example
{0k1k | k ∈ N} ∈ L Why?

Example
PATH = {⟨G , s, t⟩ | t reachable from s in directed graph G} ∈ P

Is it in L?

We don’t know.
Undirected version is in L (Reingold 2005), but the proof
is not easy (because SL = L).
What about NL?



Log Space Complexity

Problems in L

Example
{0k1k | k ∈ N} ∈ L Why?

Example
PATH = {⟨G , s, t⟩ | t reachable from s in directed graph G} ∈ P

Is it in L?
We don’t know.

Undirected version is in L (Reingold 2005), but the proof
is not easy (because SL = L).
What about NL?



Log Space Complexity

Problems in L

Example
{0k1k | k ∈ N} ∈ L Why?

Example
PATH = {⟨G , s, t⟩ | t reachable from s in directed graph G} ∈ P

Is it in L?
We don’t know.
Undirected version is in L (Reingold 2005), but the proof
is not easy (because SL = L).
What about NL?



Log Space Complexity

Problems in NL

PATH ∈ NL
On input ⟨(V ,E ), s, t⟩:

1 store v ← s on the working tape
2 repeat up to |V | − 1 times:
3 nondeterministically ‘guess’ v ′ where (v , v ′) ∈ E
4 if v ′ = t accept, else set v ← v ′

5 reject

Why is this in NL?

Question
L ⊆ NL, but is NL ⊆ L? We don’t know.
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Log Space Complexity

Log-space transducers

Definition
A log-space transducer is a Turing machine with three tapes:

1 The input tape, which is read-only.
2 The working tape, which is read-write and log-bounded.
3 The output tape, which is write-only.

A log-space reduction is a reduction computable by a
log-space transducer.



Log Space Complexity

Hardness

Definition
A problem P1 is log-space reducible to P2, written P1 ≤L P2, if
there is a log-space reduction from P1 to P2.

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A problem P is NL-Hard if, for every A ∈ NL, A ≤L P

If a problem P1 is NL-hard and P1 ≤P P2 then P2 is
NL-Hard.
To prove that a problem P2 is NL-hard, show that there’s a
log-space reduction from a known NL-hard P1 to P2.
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Log Space Complexity

Completeness

Question
If any NL-hard problem is shown to be L, what does that mean?

Definition
A problem is NL-complete if it is both NL-hard and in NL.

Example
PATH is NL-complete.

We already know PATH ∈ NL.
Why is it NL-hard?
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Log Space Complexity

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing
machine M that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the
accept configuration t1.

The transducer needs only log space on the working tape to
produce the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Because PATH ∈ P, we conclude L ⊆ NL ⊆ P!

1W.l.o.g. we say there is just one accepting configuration.



Log Space Complexity

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing
machine M that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the
accept configuration t1.

The transducer needs only log space on the working tape to
produce the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Because PATH ∈ P, we conclude L ⊆ NL ⊆ P!

1W.l.o.g. we say there is just one accepting configuration.



Log Space Complexity

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing
machine M that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the
accept configuration t1.

The transducer needs only log space on the working tape to
produce the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Because PATH ∈ P, we conclude L ⊆ NL ⊆ P!

1W.l.o.g. we say there is just one accepting configuration.



Log Space Complexity

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing
machine M that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the
accept configuration t1.

The transducer needs only log space on the working tape to
produce the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Because PATH ∈ P, we conclude L ⊆ NL ⊆ P!

1W.l.o.g. we say there is just one accepting configuration.



Log Space Complexity

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing
machine M that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the
accept configuration t1.

The transducer needs only log space on the working tape to
produce the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Because PATH ∈ P, we conclude L ⊆ NL ⊆ P!

1W.l.o.g. we say there is just one accepting configuration.
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L vs NL
We hypothesise that we pay an exponential time penalty when
we simulate nondeterministic machines with deterministic
ones, but what about space?

Note: We don’t know that NL ⊈ L, so it’s possible there’s no
penalty.

Savitch’s Theorem
Define a recursive algorithm kpath(s, t, k) that returns true iff
there is a path of length k from s to t in a graph G = (V ,E ).

If k = 0, return s = t.
If k = 1, return (s, t) ∈ E .
If k > 1, for each u ∈ V :
▶ If kpath(s, u, ⌊k2 ⌋) ∧ kpath(u, t, ⌈k2 ⌉), return true.

kpath can compute PATH in log2(|G |) space, so NL ⊆ L2. In
general NSPACE(f (n)) ⊆ SPACE(f 2(n)).
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Log Space Complexity

Certificates

Just as with NP, we can also characterise NL in terms of a
verifier for certificates (candidate solutions):

Theorem
A problem P ∈ NL iff there is a log-space verifier for
P-certificates.
A log-space verifier has three tapes:

1 A input tape that is read-only.
2 A working tape that is log-bounded.
3 A certificate tape that is read-once (left to right).

The size of the certificate we are verifying must be polynomial
in the size of the input.

Exercise: Show that this is equivalent to our NSPACE
definition previously.
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Log Space Complexity

PATH ∈ NL

Example
A certificate for PATH is a list of vertices v0, v1, . . . , vk forming
an acyclic path from s to t in a graph G = (V ,E ). We can check
with a log-space verifier that:

s = v0

vk = t
(vj , vj+1) ∈ E for all 0 ≤ j < k

We only read the certificate once, left to right, and it suffices to
store two nodes in our working tape, so this is log space†.

†Node names can be binary digits
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NL vs coNL

coNL is all problems whose complement is in NL.

Immerman-Szelepcsényi Theorem

NL = coNL

More generally:

NSPACE(f (x)) = coNSPACE(f (x))

Thus:

PSPACE = coPSPACE
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Proof of Immerman-Szelepcsényi
We prove this by showing PATH ∈ NL.

Intuition
Say I want to convince you (a verifier) that in a graph
G = (V ,E ), there is no path from s to t. I can do this by
convincing you of the following two statements:

1 There are exactly m|V | distinct vertices reachable from s
by paths of length ≤ |V |.

2 The target vertex t is not one of those m|V | vertices.

So, what are the certificates?
For Part 2, we just give a list of m|V | distinct vertices that
are not t, along with a certificate for each vertex v in our
list that v is reachable from s by paths of length ≤ |V |
For Part 1, we do inductive counting...
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Inductive Counting

I want to convince you (the verifier) of the following:

Certify this:
There are exactly m|V | distinct vertices reachable from s by
paths of length ≤ |V |.

To do this, I’ll make an inductive argument:

Steps
For each k = 0, . . . , |V | − 1, I’ll show you (the verifier) that:
“if mk vertices are reachable by paths of length ≤ k ,
then mk+1 vertices are reachable by paths of length ≤ k + 1.”
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Sub-certificates

Steps
For each k = 0, . . . , |V | − 1, I’ll show you (the verifier) that:
“if mk vertices are reachable by paths of length ≤ k ,
then mk+1 vertices are reachable by paths of length ≤ k + 1.”

The certificate for each step takes the form of a sub-certificate
for each vertex v ∈ V :

If v is reachable by paths of length ≤ k + 1, then it is just a
path from s to v of length ≤ k + 1
If v is not reachable by paths of length ≤ k + 1, then it is a
list of mk distinct vertices that do not have an edge to v ,
and a certificate for each vertex v ′ in our list that v ′ is
reachable from s by paths of length ≤ k .

There should be exactly mk+1 “reachable” sub-certificates
(our verifier will check this).
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Sub-polynomiality
We have a finer-grained notion of reduction now, so we can
make distinctions smaller than P:

P-Completeness
A problem is P-complete iff it is in P and all problems in P can
be log-space reduced to it.
Examples: Emptiness of CFGs, True Boolean Circuit Value, etc.

Logarithmic Hierarchy
We can imagine a logarithmic hierarchy like the polynomial
hierarchy, i.e. the languages decided by an alternating Turing
machine in logarithmic space with a bounded number of
alternations.
By Immerman-Szelepcsényi, the hierarchy collapses, i.e.
ΣL

j = NL for all j . But for unbounded alternations, AL = P.
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