
Introduction to Theoretical Computer
Science

Lecture 10 [bonus]: Games

Dr. Liam O’Connor
University of Edinburgh
Semester 1, 2023/2024



Logical Games Back and Forth Games Parity Games

Logical Games

Consider a game played between two players, Abelard,
written ∀ and Eloise, written ∃.

The game involves alternately choosing elements of a
domain Ω. As they choose, they produce a sequence of
elements a0, a1, a2, . . .

An infinite sequence of such elements is called a play.
(w.l.o.g. we generalise finite to infinite sequences)
There are disjoint sets W∃ and W∀, which contain the
winning plays for ∃ and ∀ respectively.
A logical game is total if all plays are in W∃ or W∀.
A logical game is well-founded if every play is determined
to be in W∃ or W∀ based on a finite prefix.
A logical game is finite if there is an n such that all plays
are determined to be in W∃ or W∀ based on a finite prefix
of length n.



Logical Games Back and Forth Games Parity Games

Logical Games

Consider a game played between two players, Abelard,
written ∀ and Eloise, written ∃.
The game involves alternately choosing elements of a
domain Ω. As they choose, they produce a sequence of
elements a0, a1, a2, . . .

An infinite sequence of such elements is called a play.
(w.l.o.g. we generalise finite to infinite sequences)
There are disjoint sets W∃ and W∀, which contain the
winning plays for ∃ and ∀ respectively.
A logical game is total if all plays are in W∃ or W∀.
A logical game is well-founded if every play is determined
to be in W∃ or W∀ based on a finite prefix.
A logical game is finite if there is an n such that all plays
are determined to be in W∃ or W∀ based on a finite prefix
of length n.



Logical Games Back and Forth Games Parity Games

Logical Games

Consider a game played between two players, Abelard,
written ∀ and Eloise, written ∃.
The game involves alternately choosing elements of a
domain Ω. As they choose, they produce a sequence of
elements a0, a1, a2, . . .

An infinite sequence of such elements is called a play.
(w.l.o.g. we generalise finite to infinite sequences)

There are disjoint sets W∃ and W∀, which contain the
winning plays for ∃ and ∀ respectively.
A logical game is total if all plays are in W∃ or W∀.
A logical game is well-founded if every play is determined
to be in W∃ or W∀ based on a finite prefix.
A logical game is finite if there is an n such that all plays
are determined to be in W∃ or W∀ based on a finite prefix
of length n.



Logical Games Back and Forth Games Parity Games

Logical Games

Consider a game played between two players, Abelard,
written ∀ and Eloise, written ∃.
The game involves alternately choosing elements of a
domain Ω. As they choose, they produce a sequence of
elements a0, a1, a2, . . .

An infinite sequence of such elements is called a play.
(w.l.o.g. we generalise finite to infinite sequences)
There are disjoint sets W∃ and W∀, which contain the
winning plays for ∃ and ∀ respectively.

A logical game is total if all plays are in W∃ or W∀.
A logical game is well-founded if every play is determined
to be in W∃ or W∀ based on a finite prefix.
A logical game is finite if there is an n such that all plays
are determined to be in W∃ or W∀ based on a finite prefix
of length n.



Logical Games Back and Forth Games Parity Games

Logical Games

Consider a game played between two players, Abelard,
written ∀ and Eloise, written ∃.
The game involves alternately choosing elements of a
domain Ω. As they choose, they produce a sequence of
elements a0, a1, a2, . . .

An infinite sequence of such elements is called a play.
(w.l.o.g. we generalise finite to infinite sequences)
There are disjoint sets W∃ and W∀, which contain the
winning plays for ∃ and ∀ respectively.
A logical game is total if all plays are in W∃ or W∀.

A logical game is well-founded if every play is determined
to be in W∃ or W∀ based on a finite prefix.
A logical game is finite if there is an n such that all plays
are determined to be in W∃ or W∀ based on a finite prefix
of length n.



Logical Games Back and Forth Games Parity Games

Logical Games

Consider a game played between two players, Abelard,
written ∀ and Eloise, written ∃.
The game involves alternately choosing elements of a
domain Ω. As they choose, they produce a sequence of
elements a0, a1, a2, . . .

An infinite sequence of such elements is called a play.
(w.l.o.g. we generalise finite to infinite sequences)
There are disjoint sets W∃ and W∀, which contain the
winning plays for ∃ and ∀ respectively.
A logical game is total if all plays are in W∃ or W∀.
A logical game is well-founded if every play is determined
to be in W∃ or W∀ based on a finite prefix.

A logical game is finite if there is an n such that all plays
are determined to be in W∃ or W∀ based on a finite prefix
of length n.



Logical Games Back and Forth Games Parity Games

Logical Games

Consider a game played between two players, Abelard,
written ∀ and Eloise, written ∃.
The game involves alternately choosing elements of a
domain Ω. As they choose, they produce a sequence of
elements a0, a1, a2, . . .

An infinite sequence of such elements is called a play.
(w.l.o.g. we generalise finite to infinite sequences)
There are disjoint sets W∃ and W∀, which contain the
winning plays for ∃ and ∀ respectively.
A logical game is total if all plays are in W∃ or W∀.
A logical game is well-founded if every play is determined
to be in W∃ or W∀ based on a finite prefix.
A logical game is finite if there is an n such that all plays
are determined to be in W∃ or W∀ based on a finite prefix
of length n.



Logical Games Back and Forth Games Parity Games

Winning Strategies

A logical game is determined if one or the other players have a
winning strategy.

Definition
A winning strategy is a series of moves for a player p such that,
regardless of the moves of the other player, the resulting play
will be in Wp.

Any problem in Σ0
n can be expressed as finding an ∃-winning

strategy for a finite game of length n (see previous lecture).

ϕ ≡ ∃x .∀y .∃z . R(x , y , z)

∃-winning strategy: we have a proof of ϕ.
∀-winning strategy: we have a counterexample to ϕ.



Logical Games Back and Forth Games Parity Games

Winning Strategies

A logical game is determined if one or the other players have a
winning strategy.

Definition
A winning strategy is a series of moves for a player p such that,
regardless of the moves of the other player, the resulting play
will be in Wp.

Any problem in Σ0
n can be expressed as finding an ∃-winning

strategy for a finite game of length n (see previous lecture).

ϕ ≡ ∃x .∀y .∃z . R(x , y , z)

∃-winning strategy: we have a proof of ϕ.
∀-winning strategy: we have a counterexample to ϕ.



Logical Games Back and Forth Games Parity Games

Winning Strategies

A logical game is determined if one or the other players have a
winning strategy.

Definition
A winning strategy is a series of moves for a player p such that,
regardless of the moves of the other player, the resulting play
will be in Wp.

Any problem in Σ0
n can be expressed as finding an ∃-winning

strategy for a finite game of length n (see previous lecture).

ϕ ≡ ∃x .∀y .∃z . R(x , y , z)

∃-winning strategy: we have a proof of ϕ.
∀-winning strategy: we have a counterexample to ϕ.



Logical Games Back and Forth Games Parity Games

Determined Games

Theorem
Every well-founded game is determined.

Suppose ∀ has no winning strategy for the game. That is, ∀
has no winning strategy from the initial position of the
game.

If ∀ moves, then the next position must also give no
winning strategy, or there would have been a winning
strategy from the previous position.
If ∃ moves, she must have a move that does not put ∀ into
a winning strategy, or otherwise the previous position
would have a ∀-winning strategy.
Thus, inductively, the entire run will never put ∀ in a
winning position. Thus, ∃ has won.



Logical Games Back and Forth Games Parity Games

Determined Games

Theorem
Every well-founded game is determined.

Suppose ∀ has no winning strategy for the game. That is, ∀
has no winning strategy from the initial position of the
game.
If ∀ moves, then the next position must also give no
winning strategy, or there would have been a winning
strategy from the previous position.

If ∃ moves, she must have a move that does not put ∀ into
a winning strategy, or otherwise the previous position
would have a ∀-winning strategy.
Thus, inductively, the entire run will never put ∀ in a
winning position. Thus, ∃ has won.



Logical Games Back and Forth Games Parity Games

Determined Games

Theorem
Every well-founded game is determined.

Suppose ∀ has no winning strategy for the game. That is, ∀
has no winning strategy from the initial position of the
game.
If ∀ moves, then the next position must also give no
winning strategy, or there would have been a winning
strategy from the previous position.
If ∃ moves, she must have a move that does not put ∀ into
a winning strategy, or otherwise the previous position
would have a ∀-winning strategy.

Thus, inductively, the entire run will never put ∀ in a
winning position. Thus, ∃ has won.



Logical Games Back and Forth Games Parity Games

Determined Games

Theorem
Every well-founded game is determined.

Suppose ∀ has no winning strategy for the game. That is, ∀
has no winning strategy from the initial position of the
game.
If ∀ moves, then the next position must also give no
winning strategy, or there would have been a winning
strategy from the previous position.
If ∃ moves, she must have a move that does not put ∀ into
a winning strategy, or otherwise the previous position
would have a ∀-winning strategy.
Thus, inductively, the entire run will never put ∀ in a
winning position. Thus, ∃ has won.



Logical Games Back and Forth Games Parity Games

Hintikka Games

Duality
The dual of a game G , written G , is the game where ∀ and ∃ are
transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka
games. Define G [ϕ] for all first-order formulae ϕ:

G [∀x .P] = ∀ picks an x and the game proceeds as G [P].
G [∃x .P] = ∃ picks an x and the game proceeds as G [P].
G [P ∧ Q] = ∀ picks if the game proceeds as G [P] or G [Q].
G [P ∨ Q] = ∃ picks if the game proceeds as G [P] or G [Q].
G [¬P] = G [P]

⊤ is winning for ∃. ⊥ is winning for ∀.
A formula ϕ holds iff ∃ has a winning strategy for G [ϕ].



Logical Games Back and Forth Games Parity Games

Hintikka Games

Duality
The dual of a game G , written G , is the game where ∀ and ∃ are
transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka
games. Define G [ϕ] for all first-order formulae ϕ:

G [∀x .P] = ∀ picks an x and the game proceeds as G [P].

G [∃x .P] = ∃ picks an x and the game proceeds as G [P].
G [P ∧ Q] = ∀ picks if the game proceeds as G [P] or G [Q].
G [P ∨ Q] = ∃ picks if the game proceeds as G [P] or G [Q].
G [¬P] = G [P]

⊤ is winning for ∃. ⊥ is winning for ∀.
A formula ϕ holds iff ∃ has a winning strategy for G [ϕ].



Logical Games Back and Forth Games Parity Games

Hintikka Games

Duality
The dual of a game G , written G , is the game where ∀ and ∃ are
transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka
games. Define G [ϕ] for all first-order formulae ϕ:

G [∀x .P] = ∀ picks an x and the game proceeds as G [P].
G [∃x .P] = ∃ picks an x and the game proceeds as G [P].

G [P ∧ Q] = ∀ picks if the game proceeds as G [P] or G [Q].
G [P ∨ Q] = ∃ picks if the game proceeds as G [P] or G [Q].
G [¬P] = G [P]

⊤ is winning for ∃. ⊥ is winning for ∀.
A formula ϕ holds iff ∃ has a winning strategy for G [ϕ].



Logical Games Back and Forth Games Parity Games

Hintikka Games

Duality
The dual of a game G , written G , is the game where ∀ and ∃ are
transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka
games. Define G [ϕ] for all first-order formulae ϕ:

G [∀x .P] = ∀ picks an x and the game proceeds as G [P].
G [∃x .P] = ∃ picks an x and the game proceeds as G [P].
G [P ∧ Q] = ∀ picks if the game proceeds as G [P] or G [Q].

G [P ∨ Q] = ∃ picks if the game proceeds as G [P] or G [Q].
G [¬P] = G [P]

⊤ is winning for ∃. ⊥ is winning for ∀.
A formula ϕ holds iff ∃ has a winning strategy for G [ϕ].



Logical Games Back and Forth Games Parity Games

Hintikka Games

Duality
The dual of a game G , written G , is the game where ∀ and ∃ are
transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka
games. Define G [ϕ] for all first-order formulae ϕ:

G [∀x .P] = ∀ picks an x and the game proceeds as G [P].
G [∃x .P] = ∃ picks an x and the game proceeds as G [P].
G [P ∧ Q] = ∀ picks if the game proceeds as G [P] or G [Q].
G [P ∨ Q] = ∃ picks if the game proceeds as G [P] or G [Q].

G [¬P] = G [P]

⊤ is winning for ∃. ⊥ is winning for ∀.
A formula ϕ holds iff ∃ has a winning strategy for G [ϕ].



Logical Games Back and Forth Games Parity Games

Hintikka Games

Duality
The dual of a game G , written G , is the game where ∀ and ∃ are
transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka
games. Define G [ϕ] for all first-order formulae ϕ:

G [∀x .P] = ∀ picks an x and the game proceeds as G [P].
G [∃x .P] = ∃ picks an x and the game proceeds as G [P].
G [P ∧ Q] = ∀ picks if the game proceeds as G [P] or G [Q].
G [P ∨ Q] = ∃ picks if the game proceeds as G [P] or G [Q].
G [¬P] = G [P]

⊤ is winning for ∃. ⊥ is winning for ∀.
A formula ϕ holds iff ∃ has a winning strategy for G [ϕ].



Logical Games Back and Forth Games Parity Games

Hintikka Games

Duality
The dual of a game G , written G , is the game where ∀ and ∃ are
transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka
games. Define G [ϕ] for all first-order formulae ϕ:

G [∀x .P] = ∀ picks an x and the game proceeds as G [P].
G [∃x .P] = ∃ picks an x and the game proceeds as G [P].
G [P ∧ Q] = ∀ picks if the game proceeds as G [P] or G [Q].
G [P ∨ Q] = ∃ picks if the game proceeds as G [P] or G [Q].
G [¬P] = G [P]

⊤ is winning for ∃. ⊥ is winning for ∀.

A formula ϕ holds iff ∃ has a winning strategy for G [ϕ].



Logical Games Back and Forth Games Parity Games

Hintikka Games

Duality
The dual of a game G , written G , is the game where ∀ and ∃ are
transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka
games. Define G [ϕ] for all first-order formulae ϕ:

G [∀x .P] = ∀ picks an x and the game proceeds as G [P].
G [∃x .P] = ∃ picks an x and the game proceeds as G [P].
G [P ∧ Q] = ∀ picks if the game proceeds as G [P] or G [Q].
G [P ∨ Q] = ∃ picks if the game proceeds as G [P] or G [Q].
G [¬P] = G [P]

⊤ is winning for ∃. ⊥ is winning for ∀.
A formula ϕ holds iff ∃ has a winning strategy for G [ϕ].



Logical Games Back and Forth Games Parity Games

Logics for Infinite Games
We can specify infinite (or unbounded) games using fixed-point
logics. There are a lot of subtleties here that I can talk about
later if time.

For now, let’s just add a least fixed point formula construct
[lfpR(x⃗).ϕ], with the equivalence:

[lfpR(x⃗). ϕ](y⃗) ≡ ϕ

[
y⃗/x⃗

] [
[lfpR (⃗x). ϕ](⃗z)/R (⃗z)

]

Example (Solitaire Games)
Given a graph consisting of a connectness predicate E (a, b),
the cycle-finding game can be stated as:

[lfpR(u,v). E (u, v) ∨ (∃w . E (u,w) ∧ R(w , v))]

Why is this a solitaire game?



Logical Games Back and Forth Games Parity Games

Logics for Infinite Games
We can specify infinite (or unbounded) games using fixed-point
logics. There are a lot of subtleties here that I can talk about
later if time.
For now, let’s just add a least fixed point formula construct
[lfpR(x⃗).ϕ], with the equivalence:

[lfpR(x⃗). ϕ](y⃗) ≡ ϕ

[
y⃗/x⃗

] [
[lfpR (⃗x). ϕ](⃗z)/R (⃗z)

]

Example (Solitaire Games)
Given a graph consisting of a connectness predicate E (a, b),
the cycle-finding game can be stated as:

[lfpR(u,v). E (u, v) ∨ (∃w . E (u,w) ∧ R(w , v))]

Why is this a solitaire game?



Logical Games Back and Forth Games Parity Games

Logics for Infinite Games
We can specify infinite (or unbounded) games using fixed-point
logics. There are a lot of subtleties here that I can talk about
later if time.
For now, let’s just add a least fixed point formula construct
[lfpR(x⃗).ϕ], with the equivalence:

[lfpR(x⃗). ϕ](y⃗) ≡ ϕ

[
y⃗/x⃗

] [
[lfpR (⃗x). ϕ](⃗z)/R (⃗z)

]

Example (Solitaire Games)
Given a graph consisting of a connectness predicate E (a, b),
the cycle-finding game can be stated as:

[lfpR(u,v). E (u, v) ∨ (∃w . E (u,w) ∧ R(w , v))]

Why is this a solitaire game?



Logical Games Back and Forth Games Parity Games

Back and Forth Games

Back and forth games can be viewed as a game to construct a
comparison between two structures A and B .

The two players are called Spoiler and Duplicator.
S first picks an element of A.
D picks a “matching” element of B .
S wins if he picks an element that D cannot match.
D wins if she can continue matching S’s moves forever.



Logical Games Back and Forth Games Parity Games

Back and Forth Games

Back and forth games can be viewed as a game to construct a
comparison between two structures A and B .

The two players are called Spoiler and Duplicator.

S first picks an element of A.
D picks a “matching” element of B .
S wins if he picks an element that D cannot match.
D wins if she can continue matching S’s moves forever.



Logical Games Back and Forth Games Parity Games

Back and Forth Games

Back and forth games can be viewed as a game to construct a
comparison between two structures A and B .

The two players are called Spoiler and Duplicator.
S first picks an element of A.
D picks a “matching” element of B .

S wins if he picks an element that D cannot match.
D wins if she can continue matching S’s moves forever.



Logical Games Back and Forth Games Parity Games

Back and Forth Games

Back and forth games can be viewed as a game to construct a
comparison between two structures A and B .

The two players are called Spoiler and Duplicator.
S first picks an element of A.
D picks a “matching” element of B .
S wins if he picks an element that D cannot match.
D wins if she can continue matching S’s moves forever.



Logical Games Back and Forth Games Parity Games

Simulation Games
Consider a traffic light system and its specification:

System

R A G

Spec

? G

Abstraction
Showing that the system meets the spec requires a simulation
relation: a winning strategy for a back and forth game where S
picks system moves and D picks matching spec moves.



Logical Games Back and Forth Games Parity Games

Simulation Games
Consider a traffic light system and its specification:

System

R A G

Spec

? G

Abstraction
Showing that the system meets the spec requires a simulation
relation: a winning strategy for a back and forth game where S
picks system moves and D picks matching spec moves.



Logical Games Back and Forth Games Parity Games

Simulation Relations

Definition
A simulation of an automaton C by an automaton A is defined
as a relation S ⊆ QC × QA which satisfies:

If s S t then LC (s) ∩ LA = LA(t)

If s S t and s a−→ s ′ (with a ∈ ΣC , s ′ ∈ QC ) then there exists
a t ′ ∈ QA such that t a−→ t ′ and s ′ R t ′.

The automaton A is an abstraction of the concrete automaton
C iff a A simulates C . This is sometimes written A ⊑ C .

Simulation relations are the foundation of abstraction – a key
technique in formal modelling and verification.



Logical Games Back and Forth Games Parity Games

Simulation Relations

Definition
A simulation of an automaton C by an automaton A is defined
as a relation S ⊆ QC × QA which satisfies:

If s S t then LC (s) ∩ LA = LA(t)

If s S t and s a−→ s ′ (with a ∈ ΣC , s ′ ∈ QC ) then there exists
a t ′ ∈ QA such that t a−→ t ′ and s ′ R t ′.

The automaton A is an abstraction of the concrete automaton
C iff a A simulates C . This is sometimes written A ⊑ C .

Simulation relations are the foundation of abstraction – a key
technique in formal modelling and verification.



Logical Games Back and Forth Games Parity Games

Simulation Relations

Definition
A simulation of an automaton C by an automaton A is defined
as a relation S ⊆ QC × QA which satisfies:

If s S t then LC (s) ∩ LA = LA(t)

If s S t and s a−→ s ′ (with a ∈ ΣC , s ′ ∈ QC ) then there exists
a t ′ ∈ QA such that t a−→ t ′ and s ′ R t ′.

The automaton A is an abstraction of the concrete automaton
C iff a A simulates C . This is sometimes written A ⊑ C .

Simulation relations are the foundation of abstraction – a key
technique in formal modelling and verification.



Logical Games Back and Forth Games Parity Games

Model Equivalence

Question
When do two automata represent the same system?

hmm...

Is it (only) when A = B (graph isomorphism)?

a a a

Nope!



Logical Games Back and Forth Games Parity Games

Model Equivalence

Question
When do two automata represent the same system?
hmm...

Is it (only) when A = B (graph isomorphism)?

a a a

Nope!



Logical Games Back and Forth Games Parity Games

Model Equivalence

Question
When do two automata represent the same system?
hmm...

Is it (only) when A = B (graph isomorphism)?

a a a

Nope!



Logical Games Back and Forth Games Parity Games

Tree Equivalence?

Is it (only) when the two automata have the same computation
tree?

a

b

b

a b

Also no!



Logical Games Back and Forth Games Parity Games

Tree Equivalence?

Is it (only) when the two automata have the same computation
tree?

a

b

b

a b

Also no!



Logical Games Back and Forth Games Parity Games

Bisimulations

Definition
A (strong) bisimulation between two automata A and B is
defined as a relation R ⊆ QA × QB which satisfies:

If s R t then LA(s) = LB(t)

If s R t and s a−→ s ′ (with a ∈ ΣA, s ′ ∈ QA) then there exists
a t ′ ∈ QB such that t a−→ t ′ and s ′ R t ′.
If s R t and t a−→ t ′ (with a ∈ ΣB , t ′ ∈ QB ) then there exists
a s ′ ∈ QA such that s a−→ s ′ and s ′ R t ′.

Two automata are bisimulation equivalent or bisimilar iff there
exists a bisimulation between their initial states.

Let’s find bisimulations for the previous examples.



Logical Games Back and Forth Games Parity Games

Bisimulations

Definition
A (strong) bisimulation between two automata A and B is
defined as a relation R ⊆ QA × QB which satisfies:

If s R t then LA(s) = LB(t)

If s R t and s a−→ s ′ (with a ∈ ΣA, s ′ ∈ QA) then there exists
a t ′ ∈ QB such that t a−→ t ′ and s ′ R t ′.

If s R t and t a−→ t ′ (with a ∈ ΣB , t ′ ∈ QB ) then there exists
a s ′ ∈ QA such that s a−→ s ′ and s ′ R t ′.

Two automata are bisimulation equivalent or bisimilar iff there
exists a bisimulation between their initial states.

Let’s find bisimulations for the previous examples.



Logical Games Back and Forth Games Parity Games

Bisimulations

Definition
A (strong) bisimulation between two automata A and B is
defined as a relation R ⊆ QA × QB which satisfies:

If s R t then LA(s) = LB(t)

If s R t and s a−→ s ′ (with a ∈ ΣA, s ′ ∈ QA) then there exists
a t ′ ∈ QB such that t a−→ t ′ and s ′ R t ′.
If s R t and t a−→ t ′ (with a ∈ ΣB , t ′ ∈ QB ) then there exists
a s ′ ∈ QA such that s a−→ s ′ and s ′ R t ′.

Two automata are bisimulation equivalent or bisimilar iff there
exists a bisimulation between their initial states.

Let’s find bisimulations for the previous examples.



Logical Games Back and Forth Games Parity Games

Bisimulations

Definition
A (strong) bisimulation between two automata A and B is
defined as a relation R ⊆ QA × QB which satisfies:

If s R t then LA(s) = LB(t)

If s R t and s a−→ s ′ (with a ∈ ΣA, s ′ ∈ QA) then there exists
a t ′ ∈ QB such that t a−→ t ′ and s ′ R t ′.
If s R t and t a−→ t ′ (with a ∈ ΣB , t ′ ∈ QB ) then there exists
a s ′ ∈ QA such that s a−→ s ′ and s ′ R t ′.

Two automata are bisimulation equivalent or bisimilar iff there
exists a bisimulation between their initial states.

Let’s find bisimulations for the previous examples.



Logical Games Back and Forth Games Parity Games

Bisimulations

Definition
A (strong) bisimulation between two automata A and B is
defined as a relation R ⊆ QA × QB which satisfies:

If s R t then LA(s) = LB(t)

If s R t and s a−→ s ′ (with a ∈ ΣA, s ′ ∈ QA) then there exists
a t ′ ∈ QB such that t a−→ t ′ and s ′ R t ′.
If s R t and t a−→ t ′ (with a ∈ ΣB , t ′ ∈ QB ) then there exists
a s ′ ∈ QA such that s a−→ s ′ and s ′ R t ′.

Two automata are bisimulation equivalent or bisimilar iff there
exists a bisimulation between their initial states.

Let’s find bisimulations for the previous examples.



Logical Games Back and Forth Games Parity Games

Bisimulation Games

We can turn our simulation games into bisimulation games by
allowing the locus of control to switch between the two
players.

Bisimulation Games

S goes first and picks a move from either system A or
system B .
If S picked a move from system A, D must pick a matching
move from system B , and vice versa.
Then, S picks another move...
If S can find a move that D cannot match, S wins.
D wins if it can match all moves selected by S.



Logical Games Back and Forth Games Parity Games

Bisimulation Games

We can turn our simulation games into bisimulation games by
allowing the locus of control to switch between the two
players.

Bisimulation Games

S goes first and picks a move from either system A or
system B .

If S picked a move from system A, D must pick a matching
move from system B , and vice versa.
Then, S picks another move...
If S can find a move that D cannot match, S wins.
D wins if it can match all moves selected by S.



Logical Games Back and Forth Games Parity Games

Bisimulation Games

We can turn our simulation games into bisimulation games by
allowing the locus of control to switch between the two
players.

Bisimulation Games

S goes first and picks a move from either system A or
system B .
If S picked a move from system A, D must pick a matching
move from system B , and vice versa.

Then, S picks another move...
If S can find a move that D cannot match, S wins.
D wins if it can match all moves selected by S.



Logical Games Back and Forth Games Parity Games

Bisimulation Games

We can turn our simulation games into bisimulation games by
allowing the locus of control to switch between the two
players.

Bisimulation Games

S goes first and picks a move from either system A or
system B .
If S picked a move from system A, D must pick a matching
move from system B , and vice versa.
Then, S picks another move...

If S can find a move that D cannot match, S wins.
D wins if it can match all moves selected by S.



Logical Games Back and Forth Games Parity Games

Bisimulation Games

We can turn our simulation games into bisimulation games by
allowing the locus of control to switch between the two
players.

Bisimulation Games

S goes first and picks a move from either system A or
system B .
If S picked a move from system A, D must pick a matching
move from system B , and vice versa.
Then, S picks another move...
If S can find a move that D cannot match, S wins.
D wins if it can match all moves selected by S.



Logical Games Back and Forth Games Parity Games

Parity Games

Definition
A parity game is played between two players on a directed
graph. Player 0 chooses moves from circular nodes and Player
1 chooses for square nodes. Player n wins an infinite play if the
highest number infinitely visited in the play ≡ n [mod 2].



Logical Games Back and Forth Games Parity Games

Parity Games

Parity games can be used to give a model-checking
algorithm for a type of logic called modal µ-calculus,
commonly used to express properties of systems.
Validity and satisfiability for many other modal logics is
reducible to parity game solving.
Parity games are history-free determined.
Zielonka gives an algorithm for solving parity games.
Open question: Can parity games be solved in polynomial
time?


	Logical Games
	Back and Forth Games
	Parity Games

