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Logical Games Back and Forth Games Parity Games

Logical Games

Consider a game played between two players, Abelard,
written ∀ and Eloise, written ∃.

The game involves alternately choosing elements of a
domain Ω. As they choose, they produce a sequence of
elements a0, a1, a2, . . .

An infinite sequence of such elements is called a play.
(w.l.o.g. we generalise finite to infinite sequences)
There are disjoint sets W∃ and W∀, which contain the
winning plays for ∃ and ∀ respectively.
A logical game is total if all plays are in W∃ or W∀.
A logical game is well-founded if every play is determined
to be in W∃ or W∀ based on a finite prefix.
A logical game is finite if there is an n such that all plays
are determined to be in W∃ or W∀ based on a finite prefix
of length n.
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Winning Strategies

A logical game is determined if one or the other players have a
winning strategy.

Definition
A winning strategy is a series of moves for a player p such that,
regardless of the moves of the other player, the resulting play
will be in Wp.

Any problem in Σ0
n can be expressed as finding an ∃-winning

strategy for a finite game of length n (see previous lecture).

ϕ ≡ ∃x .∀y .∃z . R(x , y , z)

∃-winning strategy: we have a proof of ϕ.
∀-winning strategy: we have a counterexample to ϕ.
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Determined Games

Theorem
Every well-founded game is determined.

Suppose ∀ has no winning strategy for the game. That is, ∀
has no winning strategy from the initial position of the
game.

If ∀ moves, then the next position must also give no
winning strategy, or there would have been a winning
strategy from the previous position.
If ∃ moves, she must have a move that does not put ∀ into
a winning strategy, or otherwise the previous position
would have a ∀-winning strategy.
Thus, inductively, the entire run will never put ∀ in a
winning position. Thus, ∃ has won.
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Hintikka Games

Duality
The dual of a game G , written G , is the game where ∀ and ∃ are
transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka
games. Define G [ϕ] for all first-order formulae ϕ:

G [∀x .P] = ∀ picks an x and the game proceeds as G [P].
G [∃x .P] = ∃ picks an x and the game proceeds as G [P].
G [P ∧ Q] = ∀ picks if the game proceeds as G [P] or G [Q].
G [P ∨ Q] = ∃ picks if the game proceeds as G [P] or G [Q].
G [¬P] = G [P]

⊤ is winning for ∃. ⊥ is winning for ∀.
A formula ϕ holds iff ∃ has a winning strategy for G [ϕ].
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Logics for Infinite Games
We can specify infinite (or unbounded) games using fixed-point
logics. There are a lot of subtleties here that I can talk about
later if time.

For now, let’s just add a least fixed point formula construct
[lfpR(x⃗).ϕ], with the equivalence:

[lfpR(x⃗). ϕ](y⃗) ≡ ϕ

[
y⃗/x⃗

] [
[lfpR (⃗x). ϕ](⃗z)/R (⃗z)

]

Example (Solitaire Games)
Given a graph consisting of a connectness predicate E (a, b),
the cycle-finding game can be stated as:

[lfpR(u,v). E (u, v) ∨ (∃w . E (u,w) ∧ R(w , v))]

Why is this a solitaire game?
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Back and Forth Games

Back and forth games can be viewed as a game to construct a
comparison between two structures A and B .

The two players are called Spoiler and Duplicator.
S first picks an element of A.
D picks a “matching” element of B .
S wins if he picks an element that D cannot match.
D wins if she can continue matching S’s moves forever.
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Simulation Games
Consider a traffic light system and its specification:

System

R A G

Spec

? G

Abstraction
Showing that the system meets the spec requires a simulation
relation: a winning strategy for a back and forth game where S
picks system moves and D picks matching spec moves.
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Simulation Relations

Definition
A simulation of an automaton C by an automaton A is defined
as a relation S ⊆ QC × QA which satisfies:

If s S t then LC (s) ∩ LA = LA(t)

If s S t and s a−→ s ′ (with a ∈ ΣC , s ′ ∈ QC ) then there exists
a t ′ ∈ QA such that t a−→ t ′ and s ′ R t ′.

The automaton A is an abstraction of the concrete automaton
C iff a A simulates C . This is sometimes written A ⊑ C .

Simulation relations are the foundation of abstraction – a key
technique in formal modelling and verification.
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Model Equivalence

Question
When do two automata represent the same system?

hmm...

Is it (only) when A = B (graph isomorphism)?

a a a

Nope!
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Tree Equivalence?

Is it (only) when the two automata have the same computation
tree?

a

b

b

a b

Also no!
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Bisimulations

Definition
A (strong) bisimulation between two automata A and B is
defined as a relation R ⊆ QA × QB which satisfies:

If s R t then LA(s) = LB(t)

If s R t and s a−→ s ′ (with a ∈ ΣA, s ′ ∈ QA) then there exists
a t ′ ∈ QB such that t a−→ t ′ and s ′ R t ′.
If s R t and t a−→ t ′ (with a ∈ ΣB , t ′ ∈ QB ) then there exists
a s ′ ∈ QA such that s a−→ s ′ and s ′ R t ′.

Two automata are bisimulation equivalent or bisimilar iff there
exists a bisimulation between their initial states.

Let’s find bisimulations for the previous examples.
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Bisimulation Games

We can turn our simulation games into bisimulation games by
allowing the locus of control to switch between the two
players.

Bisimulation Games

S goes first and picks a move from either system A or
system B .
If S picked a move from system A, D must pick a matching
move from system B , and vice versa.
Then, S picks another move...
If S can find a move that D cannot match, S wins.
D wins if it can match all moves selected by S.
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Parity Games

Definition
A parity game is played between two players on a directed
graph. Player 0 chooses moves from circular nodes and Player
1 chooses for square nodes. Player n wins an infinite play if the
highest number infinitely visited in the play ≡ n [mod 2].
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Parity Games

Parity games can be used to give a model-checking
algorithm for a type of logic called modal µ-calculus,
commonly used to express properties of systems.
Validity and satisfiability for many other modal logics is
reducible to parity game solving.
Parity games are history-free determined.
Zielonka gives an algorithm for solving parity games.
Open question: Can parity games be solved in polynomial
time?
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