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Here is a strategy for revising courses: First, go over all the material. For each part, imagine
trying to explain it to someone else. Can you say how it relates to other parts of the course?
Try to create a small example, application or extreme case and play with it. If you have trouble,
find the material in another reference, or ask a friend. If/when you understand the material,
imagine what questions could be asked about it. Ask yourself how you might check the
answers to those questions yourself.

Two of the students with the best (very good) exam results last year, were those that reviewed
all the material very carefully. How do I know they did this? They asked many good questions
on NB.

Given a request from the 2012 class, I ran over the class notes and, in response to what I saw,
quickly wrote a bunch of review questions. I’ve corrected them slightly since, but they’re
still much less polished and thought out than exam questions. Coming up with questions is
something you could do for yourself, and I do encourage you to think beyond what’s here. I
am not going to provide detailed worked answers to these questions. The tutorial questions
already come with extensive answers, as do many questions in the textbook.

You are moving towards doing independent research: you need to be able to come up with
questions, and answers, yourself.

That said, I will answer specific questions posted on NB, if you have made some attempt
yourself. I will also give feedback on any written answers that you hand to me. There is a
deadline: as stated on the website, in the week before the exam I don’t guarantee any level of
responsiveness, and I don’t meet with students.

1. Show that the probability of error in a repetition RN code applied to a binary symmetric
channel with flip probability f is less than 2N (f(1− f))N/2.

2. (a) How many bits are required to index K items using a fixed-width binary encod-
ing? If this fixed-width binary encoding is used as a symbol code, is it uniquely
decodable? Instantaneously decodable?

(b) Fred thinks that a fixed-width encoding is wasteful, and decides to index the eight
possible outcomes of an experiment with the symbols ‘1’, ‘10’, ‘11’, ‘100’, ‘101’,
‘110’, ‘111’, ‘000’. Would this code be a uniquely decodable symbol code if used
to store the outcomes of multiple experiments?

(c) What is the limit on the lengths of binary codewords that are uniquely decod-
able? When using binary symbol codes, why do we always use instantaneously
decodable codes?

(d) Fred now terminates the codes for multiple outcomes with dashes, for example:
‘11-110-100-000-’.
By treating this code as a ternary symbol code with output alphabet {0,1,-},
is this code uniquely decodable? Is a more efficient symbol code possible? How
efficient could a code with ternary outputs be if it need not be a symbol code? How
could a near-optimal code be achieved?
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3. Consider the ensemble of 20 fair coin toss outcomes in {T,H}20. What is the probability
of obtaining ‘TTHTTHHTTTHTTHTHHTTT’, and what is the probability of twenty heads.
Why is the latter outcome likely to be treated with more suspicion than the former?

4. Consider the ensemble of strings of N = 106 independent Bernoulli outcomes with
probability of a 1 equal to f=0.01.
(a) Which of these strings obtains the shortest encoding under arithmetic coding?

What is the length of this shortest encoding (1sf)? What is the length of an aver-
age encoding (1sf)? (For reference: H2(f) = 0.08 bits (1sf), log2 1/f = 7 bits (1sf),
log2 1/(1− f)=0.01 bits (1sf).)

(b) Summarize why the proof of the source coding theorem only uses a fixed width
encoding, while a near-optimal encoder uses such dramatically different encoding
lengths for different files.

5. Your compressor contains a probabilistic model for the next symbol P (xN+1 |m). Your
beliefs about the model given the file so far are summarized by a posterior over models
P (m |x). Write down an expression for the predictive distribution over xN+1. For
numerical reasons, the functions in your program actually report loge P (xN+1 |m) and
loge P (m |x). How would you implement your prediction rule using standard floating
point arithmetic, while avoiding underflow?

6. A coin is tossed repeatedly until it comes up heads. The number of coin tosses required
to get a head (from 1 to infinity) is recorded. The experiment is then repeated N times,
and the sum of the values recorded. Does the Central Limit Theorem (CLT) apply to
this situation, for large N? If so, what does it say, and use it to sketch the distribution
over results from this procedure. If the CLT does not apply, explain why.

7. Sketch the binary entropy function, measured in bits. Show that this function is concave
(covered much later in the course than H2 itself).

8. A biased coin, with probability of coming up tails equal to f , is spun repeatedly until it
comes up heads. The number of coin spins required to get a head (from 1 to infinity) is
recorded. What is the entropy of this ensemble? You can use entropy decomposition to
find this quickly in terms of the binary entropy function. You could numerically check
your answer by truncating the ensemble at some number of spins, and computing the
entropy by brute force.

9. Do you understand the source coding theorem? Could you explain individual parts of
it and summarize the result? Why is the log-probability used as the property to define
the typical set? Why not average the probabilities of each outcome in a block of length
N to define the typical set?

10. Show that for any ensemble a binary symbol code exists that encodes to within one
bit/symbol of the entropy on average. How does one construct an optimal symbol code?
Compared to the optimal compressed filesize, what is the worst-case (over ensembles)
percentage increase in filesize if forced to use an optimal symbol code? How might this
increase in filesize be mitigated a) by representing the ensemble differently; b) by using
something other than a symbol code?

11. Give an interpretation of Gibbs inequality: DKL(p||q) ≥ 0

12. Explain, with a diagram, Jensen’s inequality for the special case of an ensemble with
two outcomes.

2



13. Some machine learning papers report “root mean square error”, others report “mean
absolute error”. Use Jensen’s inequality to find out which error measure tends to be
bigger. Does this result make sense; can you check it with intuition and/or a special
case?

14. Describe how the size and position of intervals corresponding to source strings are
defined in arithmetic coding. What sources of information can the probabilistic model
use when making predictions, and (depending on your answer) what parts of a model
would both the sender and receiver need to have in their arithmetic coding software
from the beginning? For example if using PPM to compress English text.

15. Can you explain how a Dirichlet predictor for each possible context would be applied
to the lecture notes’ “Hi Mom” image with a context window of 3 pixels? You could try
computing the information content of the image under that model to see if you agree
with the claim in the slides. (You could easily be a few bits out if you make different
arbitrary choices to me, for example dealing with the boundaries differently.)

16. Invent a communication channel, and compute its mutual information in more than one
way, checking that you get the same answer. For example: a fair coin is tossed to choose
x=0 with p=1/2 and x=1 with p=1/2. Depending on the outcome, I pick up a biased
coin with p(head) = 1/4 if x= 0, or p(head) = 3/4 if x= 1. I then spin this coin 3 times
and record the outcome as y. Exam questions have channels painfully constructed so
that they can be worked out without a computer or a calculator, but arbitrary examples
like this one may be messier. Extreme cases may be simpler though. In the example,
what is the mutual information in the limit of observing an infinite number of spins? If
you spin only once does this correspond to a standard channel? Write down its mutual
information too.

17. Review the proof that the mutual information of the noisy typewriter channel can be
maximized for a uniform input distribution. Adapt that to explain why the ternary
confusion channel must have optimal input distribution of the form [p/2, 1−p, p/2],
(without first proving that p=1). I’m not expecting you to remember precisely what I
mean by noisy typewriter and ternary confusion. . . you can find the definitions in the
notes.

18. Summarize the result of the noisy channel coding theorem. Explain why large blocks of
channel uses can be used to obtain vanishingly small error probabilities for channels
such as the binary symmetric channel.

19. Explain why there are error patterns with N/3 bit flips (say) that will result in decoding
errors if binary code words are chosen at random. Give a channel for which error
patterns of N/3 bit flips across a block are typical. Does the noisy channel coding
theorem say we can have error-less communication for this channel? If so at what rate,
or if not, what finite error probability must we tolerate?

20. State why low-density parity check codes are ‘low-density’, and briefly on what princi-
ples decoding operates.

3


