
Information Theory	Course structure	Maths background: This is a theoretical course so some general mathematical ability is essential. Be very familiar with logarithms,
http://www.inf.ed.ac.uk/teaching/courses/it/	Constituents: — ~17 lectures — Tutorials starting in week 3	mathematical notation (such as sums) and some calculus. Probabilities are used extensively: Random variables; expectation; Bernoulli, Binomial and Gaussian distributions; joint and conditional probabilities. There will be some review, but expect to work hard if you don't have the background.
Week 1 Introduction to Information Theory	<pre>— 1 assignment (20% marks) Website: http://tinyurl.com/itmsc http://www.inf.ed.ac.uk/teaching/courses/it/ Notes, assignments, tutorial material, news (optional RSS feed)</pre>	Programming background: by the end of the course you are expected to be able to implement algorithms involving probability distributions over many variables. However, I am not going to teach you a programming language. I can discuss programming issues in the tutorials. I won't mark code, only its output, so you are free to pick a language. Pick one that's quick and easy to use.
lain Murray, 2012 School of Informatics, University of Edinburgh	Prerequisites: some maths, some programming ability	The scope of this course is to understand the applicability and properties of methods. Programming will be exploratory: slow, high-level but clear code is fine. We will not be writing the final optimized code to sit on a hard-disk controller!
Resources / Acknowledgements	Communicating with noise	Consider sending an audio signal by <i>amplitude modulation</i> : the desired speaker-cone position is the height of the signal. The figure shows an encoding of a pure tone.
Image: Stress of the stress	Signal Attenuate Add noise Boost 5 cycles 100 cycles	A classical problem with this type of communication channel is attenuation: the amplitude of the signal decays over time. (The details of this in a real system could be messy.) Assuming we could regularly boost the signal, we would also amplify any noise that has been added to the signal. After several cycles of attenuation, noise addition and amplification, corruption can be severe. A variety of analogue encodings are possible, but whatever is used, no 'boosting' process can ever return a corrupted signal exactly to its original form. In digital communication the sent message comes from a discrete set. If the message is corrupted we can 'round' to the nearest discrete message. It is possible, but not guaranteed, we'll restore the message to exactly the one sent.
Digital communication	Communication channels	The challenge
Encoding: amplitude modulation not only choice. Can re-represent messages to improve signal-to-noise ratio	modem $ ightarrow$ phone line $ ightarrow$ modem	Real channels are error prone Physical solutions:
Digital encodings: signal takes on discrete values Signal Corrupted Recovered	$\begin{array}{l} \mbox{Galileo} \rightarrow \mbox{radio waves} \rightarrow \mbox{Earth} \\ \mbox{finger tips} \rightarrow \mbox{nerves} \rightarrow \mbox{brain} \\ \mbox{parent cell} \rightarrow \mbox{daughter cells} \\ \mbox{computer memory} \rightarrow \mbox{disk drive} \rightarrow \mbox{computer memory} \end{array}$	$\begin{array}{c} \pounds \ \pounds \ \end{array}$ Change the system to reduce probability of error. Cool system, increase power,

Summary of lecture 1 (slide 2/2)	Where now	Why is compression possible?
First task: represent data optimally when there is no noise		
Representing files as (binary) numbers:		
C bits (binary digits) can index $I = 2^C$ objects.		Try to compress <i>all</i> b bit files to $< b$ bits
$\log I = C \log 2, \ C = \frac{\log I}{\log 2} \text{ for logs of any base, } C = \log_2 I$		
In information theory textbooks "log" often means "log_".		There are 2^b possible files but only (2^b-1) codewords
Experiences with the Hi Mom image:	What are the fundamental limits to compression?	
Unless we're careful, we can expand the file dramatically.	Can we avoid all the hackery?	
When developing a fancy method, always consider simple baselines. The bit encodings and header bits I used were inelegant.	Or at least make it clearer how to proceed?	Theorem: if we compress some files we must expand others
We'd like more principled and better ways to proceed. (See later).	This course: Shannon's information theory relates	(or fail to represent some files unambiguously)
Summarizing groups of bits (rectangles, runs, etc.) can lead to fewer objects to index. Structure in the image allows compression.	compression to <i>probabilistic modelling</i>	
Cheating: add whole image as a "word" in our dictionary.	A simple probabilistic model (predict from three previous neighbouring	Search for the comp.compression FAQ currently available at:
Schemes should work on future data that the receiver hasn't seen.	pixels) and an <i>arithmetic coder</i> can compress to about 220 bits .	http://www.faqs.org/faqs/compression-faq/
Which files to compress?	Sparse file model	Intuitions:
Which hies to compress.		'Blocks' of lengths $N = 1$ give naive encoding: 1 bit / symbol
		Blocks of lengths $N=2$ aren't going to help
We choose to compress the more probable files	Long binary vector \mathbf{x} , mainly zeros	maybe we want long blocks
Evenuelas comunera 28 x 28 binom sincorno like thias	Assume bits drawn independently	For large N, some blocks won't appear in the file, e.g. 1111111111 The receiver won't know exactly which blocks will be used
Example: compress 28×28 binary images like this:		Don't want a header listing blocks: expensive for large N .
7146	Bernoulli distribution, a single "bent coin" flip	Instead we use our probabilistic model of the source to guide which
	p if $x_i = 1$	blocks will be useful. For $N=5$ the 6 most probable blocks are:
At the summer of langer encodings for files like this.	$P(x_i p) = \begin{cases} p & \text{if } x_i = 1\\ (1 - p) \equiv p_0 & \text{if } x_i = 0 \end{cases}$	00000 00001 00010 00100 01000 10000
At the expense of longer encodings for files like this:		3 bits can encode these as 0–5 in binary: 000 001 010 011 100 101
	How would we compress a large file for $p = 0.1$?	Use spare codewords (110 111) followed by 4 more bits to encode remaining blocks. Expected length of this code = $3 + 4 P$ (need 4 more) = $3 + 4(1 - (1-p)^5 - 5p(1-p)^4) \approx 3.3$ bits $\Rightarrow 3.3/5 \approx 0.67$ bits/symbol
There are 2^{784} binary images. I think $< 2^{125}$ are like the digits	Idea: encode blocks of N bits at a time	
Quick quiz	Binomial distribution	Distribution over blocks
Q1. Toss a fair coin 20 times. (Block of $N=20$, $p=0.5$)	How many 1's will be in our block?	total number of bits: $N (= 1000 \text{ in examples here})$
What's the probability of all heads?		probability of a 1: $p = P(x_i=1)$
	Binomial distribution , the sum of N Bernoulli outcomes	number of 1's: $k = \sum_i x_i$
Q2. What's the probability of 'TTHTTHHTTTHTTHTHHTTT'?	$k = \sum_{n=1}^{N} x_n, x_n \sim \text{Bernoulli}(p)$	Every block is improbable!
Q3. What's the probability of 7 heads and 13 tails?	$\Rightarrow k \sim \text{Binomial}(N, p)$	$P(\mathbf{x})=p^k(1-p)^{N-k}$, (at most $(1-p)^Npprox 10^{-45}$ for $p=0.1$
you'll be waiting forever $~$ A $~$ $pprox 10^{-100}$		How many 1's will we see?
about one in a million $~~{f B}~~pprox 10^{-6}$	$P(k \mid N, p) = \binom{N}{k} p^k (1-p)^{N-k}$	$P(k) = \binom{N}{k} p^{k} (1-p)^{N-k} $ ^{0.06}
about one in ten $~~$ C $~~ pprox 10^{-1}$		€ 2 0.04
about a half $\mathbf{D} \approx 0.5$	$= \frac{N!}{(N-k)!k!}p^k(1-p)^{N-k}$	Solid: $p=0.1$
very probable $~~$ E $~~pprox 1-10^{-6}$	$(N-\kappa)!\kappa!$	Dashed: $n=0.5$
don't know Z ???	Reviewed by MacKay, p1	p = 0.0 100 500 100 k = Number of 1's

Intuitions: If we sample uniformly at random, the number of 1s is distributed according to the dashed curve. That bump is where almost all of the bit strings of length $N = 1000$ are	Evaluating the numbers	S. C.
almost all of the bit-strings of length $N = 1000$ are. When $p = 0.1$, the blocks with the most zeros are the most probable. However, there is only one block with zero ones, and not many with only a few ones. As a result, there isn't much probability mass on states with only a few ones. In fact, most of the probability mass is on blocks with around Np ones, so they are the ones we are likely to see. The most probable block is not a typical block, and we'd be surprised to see it!	$ \binom{N}{k} = \frac{N!}{(N-k)! k!}, \text{what happens for } N = 1000, \ k = 500?_{(\text{or } N = 10,000, \ k = 5,000)} $ Knee-jerk reaction: try taking logs Explicit summation: $\log x! = \sum_{n=2}^{x} \log n$ Library routines: $\ln x! = \ln \Gamma(x+1), \text{e.g. gammaln}$ Stirling's approx: $\ln x! \approx x \ln x - x + \frac{1}{2} \ln 2\pi x \dots$ Care: Stirling's series gets <i>less</i> accurate if you add lots terms(!), but the relative error disappears for large x with just the terms shown. There is also (now) a convergent version (see Wikipedia). See also: more specialist routines. Matlab/Octave: binopdf, nchoosek	S. 24 Advert 2003. If the following observations do not seem to you to be too minute, J which estim it as a favor it you would please to communicat them to the royal society If the solution of the the number 1.2.3 4.8 to 2 is equal to $\frac{1}{2}\log_2 c + 2 + \frac{1}{2} \times \log_2 2$ (effered by the societ $\frac{2\pi}{122} + \frac{1}{2602^2} - \frac{1}{12602^2} + \frac{1}{18002^2} - \frac{1}{11802^2} + \frac{1}{26}$ if c denote the circumference of a circle whose radius is unity. And it is true that this expression will view radius is unity. And it is the first terms of the foregoing societ: but the whole woise can confisienth begin to increase is they afterword increase of a greater confisienth begin to increase is they afterword increase of a greater confisienth begin to increase is they afterword increase of a greater confisienth begin to increase is they afterword increase of a greater confisienth begin to increase is they afterword increase of a greater confisienth begin to increase is they afterword increase of a greater confisienth begin to increase is they afterword increase of the proven of 2: the ' z represent as member coor so large, & with te evident 2: the ' z represent as member coor so large, & with the confisients of that
Philosophical Transactions (1683-1775) Vol. 53, (1763), pp. 269–271. The Royal Society. http://www.jstor.org/stable/105732 XLIII. A Letter from the late Reverend Mr. Thomas Bayes, F. R. S. to John Canton, M. A. and F. R. S. SIR, Read Nov. 24, T F the following obfervations do not 1763: T feem to you to be too minute, I should efteem it as a favour, if you would pleafe to commu- nicate them to the Royal Society. It has been afferted by fome eminent mathemati- cians, that the fum of the logarithms of the num- bers 1.2.3.4, &cc. to z_1 is equal to $\frac{1}{2} \log_2 c + \overline{z} + \frac{1}{2} \frac{1}{1260z^2} + \frac{1}{160z^2} \frac{1}{1180z^2} + &cc. if c denote the circumference ofa circle whofe radius is unity. And it is true that thisexprefinon will very nearly approach to the value ofthat fum when z is large, and you take in only aproper number of the first terms of the foregoingferies: but the whole feries can never property ex-$	Differpult Domini Colini Diversion and gui vigelima-septimo die February Moccare Subjectionent "Mars Grobat 9 Grow Mars 2 for Carachere" David (mars) Geo: guiler 2 for Carachere" David (mars) Geo: guiler 2 for Carachere" David (mars) Geo: Golden 2 for Diverse for July 2 Geo: Korter 5 Geo: Korter 5 John Connell 2 John Softer 5 John Softer 6 John Softer 6 John Softer 6 John Softer 6 John Softer 7 John Softer 7	 Familiarity with extreme numbers: when counting sets of possible strings or images the numbers are <i>enormous</i>. Similarly the probabilities of any such objects must be <i>tiny</i>, if the probabilities are to sum to one. Learn to guess: before computing a number, force yourself to guess a rough range of where it will be. Guessing improves intuition and might catch errors. Numerical experiments: we will derive the asymptotic behaviour of large block codes. Seeing how finite-sized blocks behave empirically is also useful. Take the logs of extreme positive numbers when implementing code. Bayes and Stirling's series: approximations of functions can be useful for analytically work. The images show copies of Bayes's letter about Stirling's series to John Canton, both handwritten and the original typeset version. Bayes studied at what became the University of Edinburgh. I've included a copy of a class list with his name (possibly not his signature) second from the end.
Compression for N-bit blocks	Can we do better?	Can we do better?
Strategy: - Encode N-bit blocks with $\leq t$ ones with $C_1(t)$ bits. - Use remaining codewords followed by $C_2(t)$ bits for other blocks. Set $C_1(t)$ and $C_2(t)$ to minimum values required. Set t to minimize average length: $C_1(t) + P(t < \sum_{n=1}^{N} x_n) C_2(t)$ $\int_{0}^{\frac{N}{N}} \int_{0}^{0} \int_{0}^{\frac{N}{N}} \int_{0}^{\frac{N}{N}} \int_{0}^{1} \int_{0}^{1} \int_{0}^{2} \int_{0}^{1} \int_{0}^{4} \int_{0}^{1} \int_{0}^{4} \int_{0}^{4} \int_{0}^{6} \int_{0}^{4} \int_{0}^{1} \int_{0}^{2} \int_{0}^{1} \int_{0}^{4} \int_{0}^{4} \int_{0}^{4} \int_{0}^{6} \int_{0}^{4} \int_{$	We took a simple, greedy strategy: Assume one code-length C_1 , add another C_2 bits if that doesn't work. First observation for large N: The first C_1 bits index almost every block we will see. $ \int_{0}^{\frac{1}{2}} \int_{0}^{0} \int_{0}^{1} \int_{$	We took a simple, greedy strategy: Assume one code-length C_1 , add another C_2 bits if that doesn't work. Second observation for large N : Trying to use $< C_1$ bits means we always use more bits At $N = 10^6$, trying to use 0.95 the optimal C_1 initial bits $\Rightarrow P(\text{need more bits}) \approx 1 - 10^{-100}$ It is very unlikely a file can be compressed into fewer bits.

Summary of lecture 2 (slide 1/2)	Summary of lecture 2 (slide 2/2)	
If some files are shrunk others must grow:	Can make a lossless compression scheme:	Information Theory
# files length b bits = 2^{b} # files $< b$ bits = $\sum_{c=0}^{b-1} 2^{c} = 1 + 2 + 4 + 8 + \dots + 2^{b-1} = 2^{b} - 1$	Actually transmit $C_1 = \lceil \log_2(I_1 + 1) \rceil$ bits Spare code word(s) are used to signal C_2 more bits should be read, where $C_2 \leq N$ can index the other blocks with $k > t$.	http://www.inf.ed.ac.uk/teaching/courses/it/
(We'll see that things are even worse for encoding blocks in a stream. Consider using bit strings up to length 2 to index symbols: A=0, B=1, C=00, D=01, E=11 If you receive 111, what was sent? BBB, BE, EB?) We temporarily focus on sparse binary files:	Expected/average code length = $C_1 + P(k > t) C_2$ Empirical results for large block-lengths N — The best codes (best t, C_1, C_2) had code length $\approx 0.47N$ — these had tiny $P(k > t)$; it doesn't matter how we encode $k > t$ — Setting $C_1 = 0.95 \times 0.47N$ made $P(k > t) \approx 1$	Week 2 Information and Entropy
Encode blocks of N bits, $\mathbf{x}=\!\texttt{00010000001000}\ldots\texttt{000}$	$\approx 0.47N$ bits are sufficient and necessary to encode long blocks	
Assume model: $P(\mathbf{x}) = p^k (1-p)^{N-k}$, where $k = \sum_i x_i = \# 1$'s"	(with our model, $p=0.1$) almost all the time and on average No scheme can compress binary variables with $p=0.1$ into less than	
Key idea: give short encoding to most probable blocks: Most probable block has $k=0$. Next N most probable blocks have $k=1$	0.47 bits on average, or we could contradict the above result.	
Here produce blocks with $k \le t$, for some threshold t . This set has $I_1 = \sum_{k=0}^{t} {N \choose k}$ items. Can index with $C_1 = \lceil \log_2 I_1 \rceil$ bits.	Other schemes will be more practical (they'd better be!) and will be closer to the $0.47N$ limit for small N.	lain Murray, 2013 School of Informatics, University of Edinburgh
Central Limit theorem	There are a few forms of the Central Limit Theorem (CLT), we are just noting a vague statement as we won't make extensive use of it.	Gaussians are not the only fruit
The sum or mean of independent variables with bounded mean and variance tends to a Gaussian (normal) distribution. $\times 10^4$ $\times 10^4$	CLT behaviour can occur unreasonably quickly when the assumptions hold. Some old random-number libraries used to use the following method for generating a sample from a unit-variance, zero-mean Gaussian: a) generate 12 samples uniformly between zero and one; b) add them up and subtract 6. It isn't that far off!	<pre>xx = importdata('HolstMars.wav');</pre>
N=1e6; hist(sum(rand(3,N),1)); hist(sum(rand(20,N),1));	Data from a natural source will usually not be Gaussian . The next slide gives examples. Reasons: extreme outliers often occur; there may be lots of strongly dependent variables underlying the data; there may be mixtures of small numbers of effects with very different means or variances. An example random variable with unbounded mean is given by the payout of the game in the <i>St. Petersburg Paradox</i> . A fair coin is tossed repeatedly until it comes up tails. The game pays out $2^{\#heads}$ pounds. How much would you pay to play? The 'expected' payout is infinite: $1/2 \times 1 + 1/4 \times 2 + 1/8 \times 4 + 1/16 \times 8 + \ldots = 1/2 + 1/2 + 1/2 + 1/2 + \ldots$	xx = importdata('forum.jpg'); hist(xx(:), 50);
How many 1's will we see?	The log-probability plot on the previous slide illustrates how one must be careful with the Central Limit Theorem. Even though the	A weighing problem
How many 1's will we see? $P(k) = {N \choose k} p^k (1-p)^{N-k}$ Gaussian fit (dashed lines):	assumptions hold, convergence of the tails is very slow. (The theory gives only "convergence in distribution" which makes weak statements out there.) While k , the number of ones, closely follows a Gaussian near the mean, we can't use the Gaussian to make precise statements about the tails.	Find 1 odd ball out of 12 You have a two-pan balance with three outputs:
$P(k) \approx \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(k-\mu)^2\right), \mu = Np, \sigma^2 = Np(1-p)$ (Binomial mean and variance, MacKay p1)	All that we will use for now is that the mass in the tails further out than a few standard deviations (a few σ) will be small. This is correct, we just can't guarantee that the probability will be quite as small as if the whole distribution actually were Gaussian.	"left-pan heavier", "right-pan heavier", or "pans equal" How many weighings do you need to find the odd ball <i>and</i> decide whether it is heavier or lighter?
	Chebyshev's inequality (MacKay p82, Wikipedia,) tells us that: $P(k - \mu \ge m\sigma) \le \frac{1}{m^2}$, a loose bound which will be good enough for what follows.	Unclear? See p66 of MacKay's book, but do not look at his answer unti
0 100 500 1000 -2000 100 500 1000 k = Number of 1's k = Number of 1's	The fact that as $N \to \infty$ all of the probability mass becomes close to the mean is referred to as the <i>law of large numbers</i> .	you have had a serious attempt to solve it. Are you sure your answer is right? Can you prove it? Can you prove it without an extensive search of the solution space?

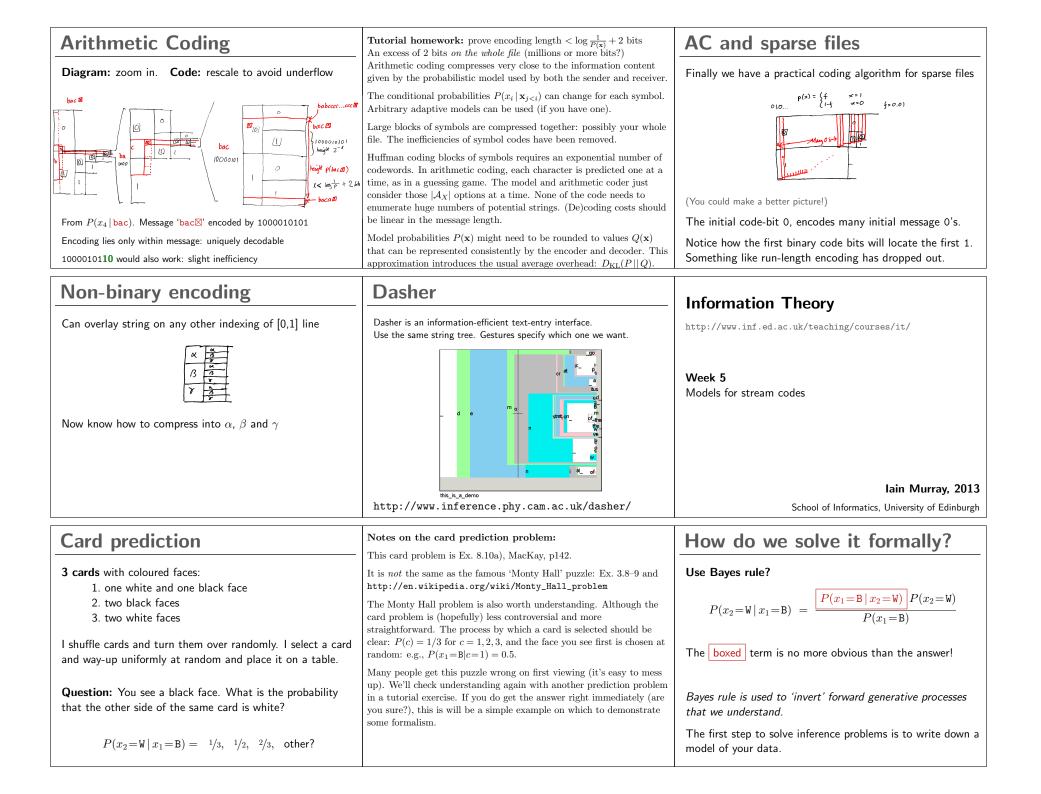
Analogy: sorting (review?)	Weighing problem: strategy
How much does it cost to sort n items?	Find 1 odd ball out of 12 with a two-pan balance
There are 2^C outcomes of C binary comparisons There are $n!$ orderings of the items To pick out the correct ordering must have: $C \log 2 \ge \log n! \implies C \ge \mathcal{O}(n \log n)$ (Stirling's series) Radix sort is " $\mathcal{O}(n)$ ", gets more information from the items	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Measuring information	$\log \frac{1}{p}$ is the only 'natural' measure of information based on probability alone. Derivation non-examinable.
	Assume: $f(ab) = f(a) + f(b)$; $f(1) = 0$; f smoothly increases $f(a(1 + \epsilon)) = f(a) + f(1 + \epsilon)$ Take limit $\epsilon \to 0$ on both sides: $f(a) + a\epsilon f'(a) = f(a) + f(1)^{0} + \epsilon f'(1)$ $\Rightarrow f'(a) = f'(1)\frac{1}{a}$ $\int_{1}^{x} f'(a) da = f'(1) \int_{1}^{x} \frac{1}{a} da$ $f(x) = f'(1) \ln x$ Define $b = e^{1/f'(1)}$, which must be >1 as f is increasing. $f(x) = \log_{b} x$ We can choose to measure information in any base (>1), as the base
	is not determined by our assumptions. Fractional information
A 'bit' is a symbol that takes on two values. The 'bit' is also a unit of information content. Numbers in 0–63, e.g. $47 = 101111$, need $\log_2 64 = 6$ bits If numbers 0–63 are equally probable, being told the number has information content $-\log \frac{1}{64} = 6$ bits The binary digits are the answers to six questions: 1: is $x \ge 327$ 2: is $x \mod 32 \ge 167$ 3: is $x \mod 32 \ge 167$ 3: is $x \mod 42 \ge 27$	Practional information A dull guessing game: (submarine, MacKay p71) Q. Is the number 36? A. $a_1 = No.$ $h(a_1) = \log \frac{1}{P(x \neq 36)} = \log \frac{64}{63} = 0.0227$ bits Q. Is the number 42? A. $a_2 = No.$ $h(a_2) = \log \frac{1}{P(x \neq 42 \mid x \neq 36)} = \log \frac{63}{62} = 0.0231$ bits Q. Is the number 47? A. $a_3 = $ Yes. $h(a_3) = \log \frac{1}{P(x = 47 \mid x \neq 42, x \neq 36)} = \log \frac{62}{1} = 5.9542$ bits
	There are 2^{C} outcomes of C binary comparisons There are $n!$ orderings of the items To pick out the correct ordering must have: $C \log 2 \ge \log n! \implies C \ge O(n \log n)$ (Stirling's series) Radix sort is " $O(n)$ ", gets more information from the items Measuring information As we read a file, or do experiments, we get information Very probable outcomes are not informative: \Rightarrow Information is zero if $P(x)=1$ \Rightarrow Information of two independent outcomes add $\Rightarrow f(\frac{1}{P(x)P(y)}) = f(\frac{1}{P(x)}) + f(\frac{1}{P(y)})$ Shannon information content: $h(x) = \log \frac{1}{P(x)} = -\log P(x)$ The base of the logarithm scales the information content: base 2: bits base 2: bits base 10: bans (used at Bletchley park: MacKog, p269) Information $0-63$, e.g. $47 = 101111$, need $\log_2 64 = 6$ bits If numbers $0-63$ are equally probable, being told the number has information content $-\log \frac{1}{64} = 6$ bits The binary digits are the answers to six questions: $1: \text{ is } x \ge 32^{2}$ $2: \text{ is much } 8 \ge 4^{2}$

Entropy	Binary Entropy	Distribution of Information
Improbable events are very informative, but don't happen very often! How much information can we <i>expect</i> ? Discrete sources: Ensemble: $X = (x, A_X, \mathcal{P}_X)$ Outcome: $x \in A_x$, $p(x=a_i) = p_i$ Alphabet: $A_X = \{a_1, a_2, \dots, a_i, \dots a_l\}$ Probabilities: $\mathcal{P}_X = \{p_1, p_2, \dots, p_i, \dots, p_l\}, p_i > 0, \sum_i p_i = 1$ Information content: $h(x = a_i) = \log \frac{1}{p_i}, h(x) = \log \frac{1}{P(x)}$ Entropy: $H(X) = \sum_i p_i \log \frac{1}{p_i} = \mathbb{E}_{\mathcal{P}_X}[h(x)]$ average information content of source, also "the uncertainty of X "	Entropy of Bernoulli variable: $H(X) = H_2(p) = p_1 \log \frac{1}{p_1} + p_2 \log \frac{1}{p_2}$ $= -p \log p - (1-p) \log(1-p)$ $\stackrel{a}{\xrightarrow{6}_{p}} \underbrace{a}_{0} $	Extended Ensemble X^N : N independent draws from X x a length- N vector containing a draw from X^N Bernoulli example: $N = 10^3$, $p = 0.1$, $H(X) = 0.47$ bits $\widehat{\mathbb{E}}$ 0 1000 2000 3000 Information Content, h(x) / bits
The information content of each element, $h(x_n)$, is a random variable. This variable has mean $H(X)$, and some finite variance σ^2 . Mean and width of the curve: The total information content of a block: $h(\mathbf{x}) = \sum_n h(x_n)$ is another random variable with mean $NH(X)$, shown in red, and variance $N\sigma^2$ or standard deviation $\sqrt{N\sigma}$. (All of the above is true for general extended ensembles, not just binary streams.) The range of the plot: The block with maximum information content is the most surprising, or least probable block. In the Bernoulli example with $p=0.1$, '1111111' is most surprising, with $h(\mathbf{x})=Nh(1)=N\log\frac{1}{0.1}$. Similarly the least informative block, is the most probable. In the example $Nh(0)=N\log\frac{1}{0.5}$. Remember to take logs base 2 to obtain an answer in bits. Neither of these blocks will <i>ever</i> be seen in practice, even though 0000000 <i>is</i> the most probable block. Only blocks with information contents close to the mean are 'typical'.	Define the <i>typical set</i> , <i>T</i> , to be all blocks with information contents a few standard deviations away from the mean: $h(\mathbf{x}) \in [NH - m\sigma\sqrt{N}, NH + m\sigma\sqrt{N}]$ for some $m > 0$. (Actually a family of typical sets for different choices of <i>m</i> .) We only need to count the typical set : Chebyshev's inequality (see MacKay p82, Wikipedia,) bounds the probability that we land outside the typical set. $P(h(\mathbf{x}) - NH \ge m\sigma\sqrt{N}) \le \frac{1}{m^2}$ We can pick <i>m</i> so that the typical set is so large that the probability of landing outside it is negligible. Then we can compress almost every file we see into a number of bits that can index the typical set. How big is the typical set? Number of elements: $ T $ Probability of landing in set ≤ 1 Probability of landing in set $\ge T p_{\min}$, where $p_{\min} = \min_{\mathbf{x} \in T} p(\mathbf{x})$ Therefore, $ T < \frac{1}{p_{\min}}$	Block with smallest probability p_{\min} has information $NH + m\sigma\sqrt{N}$. $p_{\min} = 2^{-NH-m\sigma\sqrt{N}}$ $ T < 2^{NH+m\sigma\sqrt{N}}$ Number of bits to index typical set is $NH + m\sigma\sqrt{N}$. Dividing by the block length, N we see we need: $H + m\sigma/\sqrt{N}$ bits/symbol, $\rightarrow H$ as $N \rightarrow \infty$ For any choice m, in the limit of large blocks, we can encode the typical set (and for large enough m, any file we will see in practice) with $H(X)$ bits/symbol. Can we do better? Motivation: The above result put a loose bound on the probability of being outside T, so we might have made it bigger than necessary. Then we put a loose bound on the number of items, so we assumed it was even bigger than that. Maybe we could use many fewer bits per symbol than we calculated? (Amazingly, the answer is that we can't.)
We assume there is a smaller useful set S , which we could encode with only $(1-\epsilon)H$ bits/symbol. For example, if $\epsilon = 0.01$ we would be trying to get a 1% saving in the number of bits for strings in this set. The size of S is $ S = 2^{N(1-\epsilon)H}$ Some of S will overlap with T , and some might be outside. But we know that the total probability outside of T is negligible (for large m). The probability mass of elements inside T is less than $ S p_{\max}$, where p_{\max} is the probability of the largest probability element of T . $p_{\max} = 2^{-NH+m\sigma\sqrt{N}}$ $p(\mathbf{x} \in S) \leq S p_{\max} + tail mass outside TAs N \to \infty the probability of getting a block in S tends to zero forany m. The smaller set is useless.At least H bits/symbol are required to encode an extended ensemble.$	Where now? A block of variables can be compressed into H(X) bits/symbol, but no less Where do we get the probabilities from? How do we actually compress the files? We can't explicitly list 2^{NH} items! Can we avoid using enormous blocks?	Numerics note: $\log \sum_{i} \exp(x_{i})$ $\binom{N}{k}$ blows up for large N, k ; we evaluate $l_{N,k} = \ln \binom{N}{k}$ Common problem: want to find a sum, like $\sum_{k=0}^{t} \binom{N}{k}$ Actually we want its log: $\ln \sum_{k=0}^{t} \exp(l_{N,k}) = l_{\max} + \ln \sum_{k=0}^{t} \exp(l_{N,k} - l_{\max})$

I needed this trick when numerically exploring block codes: For a range of t we needed to sum up: a) the number of strings with	Information Theory	(Binary) Symbol Codes
k = 0t; and b) the probability mass associated with those strings. The log of the number of strings says how many bits, C_1 was needed to index them. If the probability mass is close to one, that will also be close to the expected length needed to encode random strings.	http://www.inf.ed.ac.uk/teaching/courses/it/	For strings of symbols from alphabet e.g., $x_i \in \mathcal{A}_X = \{A, C, G, T\}$
For both sums we need the log of the sum of some terms, where each term is available in log form. The next slide demonstrates this for problem a), but the technique readily applies to problem b) too.	Week 3 Symbol codes	Binary codeword assigned to each symbol CGTAGATTACAGG A 0 C 10
The bumps are very well behaved: to what extent can we assume they are Gaussian due to central limit arguments?		$\downarrow \qquad \qquad$
	lain Murray, 2012 School of Informatics, University of Edinburgh	Codewords are concatenated without punctuation
Uniquely decodable	Instantaneous/Prefix Codes	Non-instantaneous Codes
We'd like to make all codewords short But some codes are not uniquely decodable	Attach symbols to leaves of a binary tree Codeword gives path to get to leaf	The last code was instantaneously decodable : We knew as soon as we'd finished receiving a symbol
$\begin{array}{cccc} CGTAGATTACAGG & A & 0 \\ & \downarrow & C & 1 \\ G & 111 \\ 111111001110110010111111 & G & 111 \\ & \downarrow & & & \\ CGTAGATTACAGG \\ CCCCCCCAACCACCACCACCACCACCCCC \\ CCGCAACCCATCCAACAGCCC \\ CCGCAACCCATCCAACAGCCC \\ GGAAGATTACAGG \\ ??? \end{array}$	1 = A $1 = 0$ $1 =$	$ \begin{array}{c} 101100000101100 \\ \downarrow \\ B 10 \\ C 000 \\ D 100 \\ \end{array} $ $ \begin{array}{c} A 1 \\ B 10 \\ C 000 \\ D 100 \\ \end{array} $ $ \begin{array}{c} D \\ D \\ D \\ \end{array} $ $ \begin{array}{c} D \\ D \\ D \\ D \\ \end{array} $ $ \begin{array}{c} D \\ D \\ D \\ D \\ \end{array} $ $ \begin{array}{c} D \\ D \\ D \\ D \\ \end{array} $ $ \begin{array}{c} D \\ D \\$
Expected length/symbol, \overline{L}	An optimal symbol code	Entropy: decomposability
Code lengths: $\{\ell_i\} = \{\ell_1, \ell_2, \dots, \ell_I\}$ Average, $\bar{L} = \sum_i p_i \ell_i$	An example code with: $\bar{L} = \sum_{i} p_i \ell_i = H(X) = \sum_{i} p_i \log \frac{1}{p_i}$	Flip a coin: Heads $\rightarrow A$ Tails \rightarrow flip again: Heads $\rightarrow B$ Tails $\rightarrow C$ $\mathcal{A}_X = \{A, B, C\}$ $\mathcal{P}_X = \{0.5, 0.25, 0.25\}$
Compare to Entropy: $H(X) = \sum_{i} p_i \log \frac{1}{p_i}$	$\begin{array}{ccc} x & p(x) & \text{codeword} \\ \hline A & \frac{1}{2} & 0 \\ B & \frac{1}{4} & 10 \\ \end{array}$	$H(X) = 0.5 \log \frac{1}{0.5} + 0.25 \log \frac{1}{0.25} + 0.25 \log \frac{1}{0.25} = 1.5 \text{ bits}$
If $\ell_i \!=\! \log \! \frac{1}{p_i}$ or $p_i \!=\! 2^{-\ell_i}$ we compress to the entropy	C $1/8$ 110 D $1/8$ 111	Or: $H(X) = H_2(0.5) + 0.5 H_2(0.5) = 1.5$ bits
		Shannon's 1948 paper §6. MacKay §2.5, p33

	1	
Why look at the decomposability of Entropy?	Limit on code lengths	000 0000
Mundane, but useful: it can make your algebra a lot neater. Decomposing computations on graphs is ubiquitous in computer science.	Imagine coding under an implicit distribution:	00 000 0001 bg 001 0010 pg 001 0011 g
Philosophical: we expect that the expected amount of information from a source should be the same if the same basic facts are represented in different ways and/or reported in a different order.	$q_i = rac{1}{Z} 2^{-\ell_i}, Z = \sum_i 2^{-\ell_i}.$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Shannon's 1948 paper used the desired decomposability of entropy to derive what form it must take, section 6. This is similar to how we intuited the information content from simple assumptions.	$H = \sum_{i} q_{i} \log \frac{1}{q_{i}} = \sum_{i} q_{i} \left(\ell_{i} + \log Z\right) = \bar{L} + \log Z$ $\Rightarrow \log Z \leq 0, Z \leq 1$	10 101 0111 0 100 1000 0 101 001 0 0 0 0
	$\begin{array}{l} Kraft-McMillan\ Inequality \boxed{\sum_{i} 2^{-\ell_i} \leq 1} \\ \\ Proof\ without\ invoking\ entropy\ bound:\ p95\ of\ MacKay,\ or\ p116\ Cover\ \&\ Thomas\ 2nd\ Ed. \end{array} (if\ uniquely-decodable) \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Kraft Inequality	Summary of Lecture 5 Symbol codes assign each symbol in an alphabet a codeword.	Performance of symbol codes
If height of budget is 1, codeword has height $=2^{-\ell_i}$	(We only considered binary symbol codes, which have binary codewords.) Messages are sent by concatenating codewords with no punctuation.	Simple idea: set $\ell_i = \left\lceil \log \frac{1}{p_i} \right\rceil$
Pick codes of required lengths in order from shortest-largest	Uniquely decodable: the original message is unambiguous	These codelengths satisfy the Kraft inequality:
Choose heighest codeword of required length beneath previously-chosen code (There won't be a gap because of sorting)	Instantaneously decodable: the original symbol can always be determined as soon as the last bit of its codeword is received.	$\sum_{i} 2^{-\ell_i} = \sum_{i} 2^{-\lceil \log 1/p_i \rceil} \le \sum_{i} p_i = 1$
Can always pick codewords if total height, $\sum_i 2^{-\ell_i} \leq 1$	Codeword lengths must satisfy $\sum_{i} 2^{-\ell_i} \leq 1$ for unique decodability Instantaneous prefix codes can always be found (if $\sum_{i} 2^{-\ell_i} \leq 1$)	Expected length, \bar{L} :
Kraft–McMillan Inequality $\sum_{i} 2^{-\ell_i} \le 1$ (instantaneous code possible)	Complete codes have $\sum_i 2^{-\ell_i} = 1$, as realized by prefix codes made from binary trees with a codeword at every leaf. If (big if) symbols are drawn i.i.d. with probabilities $\{p_i\}$, and $\ell_i = \log \frac{1}{p_i}$, then a prefix code exists that offers optimal compression.	$\bar{L} = \sum_{i} p_i \ell_i = \sum_{i} p_i \lceil \log 1/p_i \rceil < \sum_{i} p_i (\log 1/p_i + 1)$ $\bar{L} < H(\mathbf{p}) + 1$
Corollary: there's probably no point using a non-instantaneous code. Can always make complete code $\sum_i 2^{-\ell_i} = 1$: slide last codeword left.	Next lecture: how to form the best symbol code when $\{\log \frac{1}{p_i}\}$ are not integers.	Symbol codes can compress to within 1 bit/symbol of the entropy.
Optimal symbol codes	Huffman algorithm	Huffman algorithm
Encode independent symbols with known probabilities:	Merge least probable Can merge C with B or (D, E) $\xrightarrow{z \qquad p(z)} \qquad \qquad$	Given a tree, label branches with 1s and 0s to get code
E.g., $\mathcal{A}_X = \{A, B, C, D, E\}$ $\mathcal{P}_X = \{0.3, 0.25, 0.2, 0.15, 0.1\}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
We can do better than $\ell_i = \left\lceil \log rac{1}{p_i} ight ceil$	$E = a_1$ P(D or E) = 0.25	1 0.45 0 0.15 2.74 110 2
The Huffman algorithm gives an optimal symbol code.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Code-lengths are close to the information content (not just rounded up, some are shorter)
Proof: MacKay Exercise 5.16 (with solution).	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H(X) \approx 2.23$ bits. Expected length = 2.25 bits.

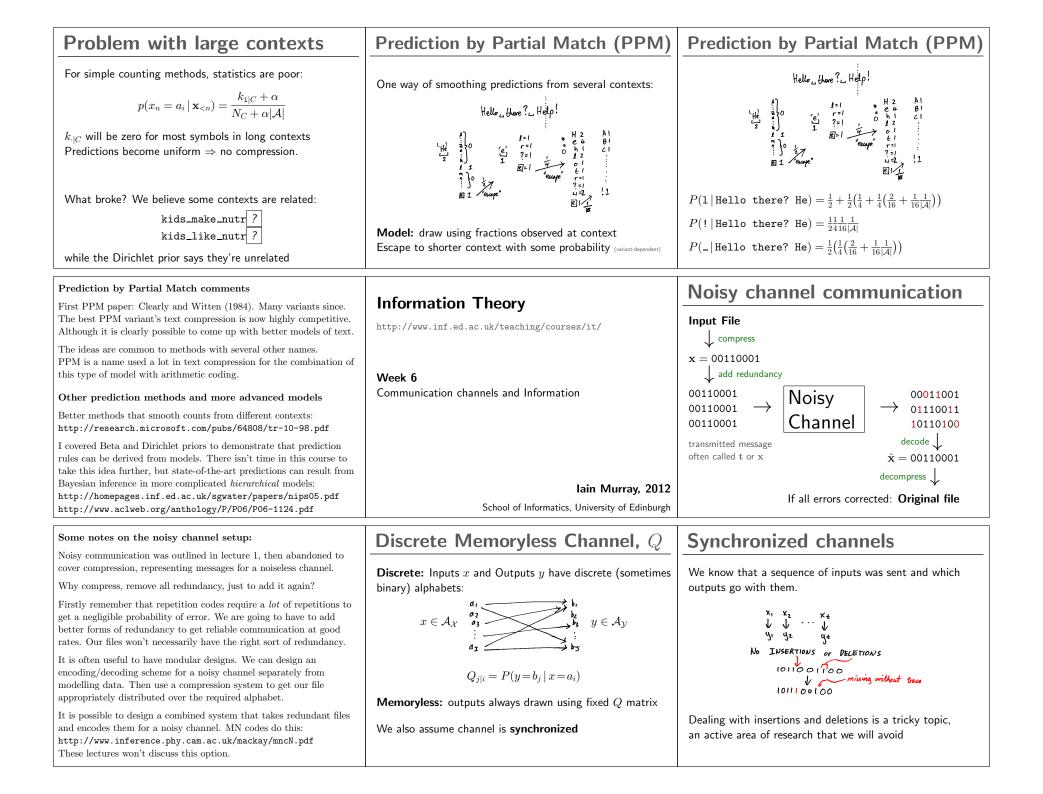
Continue merging least probable, until root represents all events $P\!=\!1$


Cover and Thomas has another version.

Wow! Despite limitations we will discuss, Huffman codes can be very good. You'll find them inside many systems (e.g., bzip2, jpeg, mp3), although all these schemes do clever stuff to come up with a good symbol representation.

Huffman decoding	Building prefix trees 'top-down'	Top-down performing badly
 Huffman codes are easily and uniquely decodable because they are prefix codes Reminder on decoding a prefix code stream: Start at root of tree Follow a branch after reading each bit of the stream Emit a symbol upon reaching a leaf of the tree Return to the root after emitting a symbol An input stream can only give one symbol sequence, the one that was encoded 	Heuristic: if you're ever building a tree, consider top-down vs. bottom-up (and maybe middle-out) $x P(x)$ $A_1 0.24$ $A_2 0.01$ Weighing problem strategy: Use questions with nearly uniform distribution over the answers. $B_1 0.24$ $B_2 0.01$ How well would this work on the ensemble to the right? $D_1 0.24$ $D_2 0.01$ $H(X) = 2.24$ bits (just over $\log 4 = 2$). Fixed-length encoding: 3 bits	$\frac{z}{A_{a}} \xrightarrow{\rho(\infty)} c(x) f(x)}{A_{a}} \xrightarrow{(2,24)} 000 3$ $\xrightarrow{A_{a}} \xrightarrow{(1)} A_{a} \xrightarrow{(2,24)} 000 3$ $\xrightarrow{A_{a}} \xrightarrow{(1)} A_{a} \xrightarrow{(2,24)} 010 3$ $\xrightarrow{(1)} \xrightarrow{(2,24)} 010 3$ $\xrightarrow{(2,24)} 010 3$ $\xrightarrow{(2,24)} 02 3$ $\xrightarrow{(2,24)} $
Compare to Huffman	Relative Entropy / KL	Gibbs' inequality
$\frac{x}{1} \xrightarrow{p(x)} c(x) f(x)}{A_1} \xrightarrow{0} c_1(x) 0.48} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} 0.48} \begin{array}{c} x \\ A_1 \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_1 \\ 0.24 \\ 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ A_2 \\ 0.01 \\ 0 \end{array} \xrightarrow{0} \begin{array}{c} x \\ 0 \\ \end{array}$	$\begin{array}{l} \mbox{Implicit probabilities: } q_i = 2^{-\ell_i} \\ (\sum_i q_i = 1 \mbox{ because Huffman codes are complete}) \\ \mbox{Extra cost for using "wrong" probability distribution:} \\ \Delta L = \sum_i p_i \ell_i - H(X) \\ &= \sum_i p_i \log \frac{1}{q_i} - \sum_i p_i \log \frac{1}{p_i} \\ &= \sum_i p_i \log \frac{p_i}{q_i} = D_{\rm KL}(p \mid\mid q) \\ \\ D_{\rm KL}(p \mid\mid q) \mbox{ is the Relative Entropy also known as the Kullback-Leibler divergence or KL-divergence} \end{array}$	An important result: $D_{\mathrm{KL}}(p \mid\mid q) \geq 0$ with equality only if $p = q$ "If we encode with the wrong distribution we will do worse than the fundamental limit given by the entropy" A simple direct proof can be shown using convexity. (Jensen's inequality)
Convexity	Convex vs. Concave	Summary of Lecture 6
$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$ $\lambda f(x_1) + (1-\lambda)f(x_2)$ $\downarrow \qquad \qquad$	For (strictly) concave functions reverse the inequality	The Huffman Algorithm gives optimal symbol codes: Merging event adds to code length for children, so Huffman always merges least probable events first A complete code implies negative log probabilities: $q_i = 2^{-\ell_i}$. If the symbols are generated with these probabilities, the symbol code compresses to the entropy. Otherwise the number of extra bits/symbol is given by the Relative Entropy or KL-divergence : $D_{\text{KL}}(p q) = \sum_i p_i \log \frac{p_i}{q_i}$ Gibbs' inequality says $D_{\text{KL}}(p q) \ge 0$ with equality only when the distributions are equal. Convexity and Concavity are useful properties when proving several inequalities in Information Theory. Next time: the basis of these proofs is Jensen's inequality , which can be used to prove Gibbs' inequality.

Information Theory	Jensen's inequality	Remembering Jensen's
http://www.inf.ed.ac.uk/teaching/courses/it/	For convex functions: $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$	The inequality is reversed for concave functions.
Week 4	À.	Which way around is the inequality?
Compressing streams	Centre of gravity	I draw a picture in the margin.
	•	Alternatively, try 'proof by example':
	Centre of gravity at $\big(\mathbb{E}[x],\mathbb{E}[f(x)]\big)$, which is above $\big(\mathbb{E}[x],f(\mathbb{E}[x])\big)$	$f(x) = x^2$ is a convex function
lain Murray, 2012	Strictly convex functions:	$\operatorname{var}[X] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 \ge 0$
School of Informatics, University of Edinburgh	Equality only if $P(x)$ puts all mass on one value	So Jensen's must be: $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$ for convex f .
Jensen's: Entropy & Perplexity	Proving Gibbs' inequality	Huffman code worst case
Set $u(x) = \frac{1}{p(x)}$, $p(u(x)) = p(x)$	Idea: use Jensen's inequality For the idea to work, the proof must look like this:	Previously saw: simple simple code $\ell_i = \lceil \log 1/p_i \rceil$ Always compresses with $\mathbb{E}[\text{length}] < H(X)+1$
$\begin{split} \mathbb{E}[u] &= \mathbb{E}[\frac{1}{p(x)}] = \mathcal{A} (\text{Tutorial 1 question}) \\ H(X) &= \mathbb{E}[\log u(x)] \leq \log \mathbb{E}[u] \end{split}$	$D_{\mathrm{KL}}(p \mid\mid q) = \sum_{i} p_i \log \frac{p_i}{q_i} = \mathbb{E}[f(u)] \ge f(\mathbb{E}[u])$	Huffman code can be this bad too: For $\mathcal{P}_X = \{1 - \epsilon, \epsilon\}, H(x) \to 0 \text{ as } \epsilon \to 0$
$H(X) \le \log \mathcal{A} $	Define $u_i = rac{q_i}{p_i}$, with $p(u_i) = p_i$, giving $\mathbb{E}[u] = 1$	Encoding symbols independently means $\mathbb{E}[\text{length}] = 1.$
Equality, maximum Entropy, for constant $u \Rightarrow {\rm uniform} \ p(x)$	Identify $f(x) \equiv \log \frac{1}{x} = -\log x$, a convex function	Relative encoding length: $\mathbb{E}[\text{length}]/H(X) \to \infty$ (!)
$2^{H(X)}$ = "Perplexity" = "Effective number of choices" Maximum effective number of choices is $ \mathcal{A} $	Substituting gives: $D_{\mathrm{KL}}(p q)\geq 0$	Question: can we fix the problem by encoding blocks? H(X) is log(effective number of choices) With many typical symbols the "+1" looks small
Reminder on Relative Entropy and symbol codes:	$\frac{a_i p_i \log_2 \frac{1}{p_i} l_i c(a_i)}{a_i a_i a_$	Bigram statistics
The Relative Entropy (AKA Kullback–Leibler or KL divergence) gives the expected extra number of bits per symbol needed to encode a source when a complete symbol code uses implicit probabilities $q_i = 2^{-\ell_i}$ instead of the true probabilities p_i .	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Previous slide: $\mathcal{A}_X = \{a - z, _\}, H(X) = 4.11 \text{ bits}$
$q_i = 2$ miscal of the true probabilities p_i . We have been assuming symbols are generated i.i.d. with known probabilities p_i .	g 0.0133 6.2 6 001001 h 0.0313 5.0 5 10001 i 0.0599 4.1 4 1001 j 0.0006 10.7 10 11010000000 k 0.0084 6.9 7 1010000	Question: I decide to encode bigrams of English text: $A_{X'} = \{aa, ab, \dots, az, a_{-}, \dots, _{-}\}$
Where would we get the probabilities p_i from if, say, we were compressing text? A simple idea is to read in a large text file and record the empirical fraction of times each character is used. Using these probabilities the next slide (from MacKay's book) gives a Huffman code for English text.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	What is $H(X')$ for this new ensemble? A ~ 2 bits B ~ 4 bits C ~ 7 bits
The Huffman code uses 4.15 bits/symbol, whereas $H(X) = 4.11$ bits. Encoding blocks might close the narrow gap.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{lll} \mathbf{D} & \sim 8 \text{ bits} \\ \mathbf{E} & \sim 16 \text{ bits} \end{array} $
More importantly English characters are not drawn independently encoding blocks could be a better model.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ζ?


Answering the previous vague question	Human predictions	Predictions
We didn't completely define the ensemble: what are the probabilities? We could draw characters independently using p_i 's found before. Then a bigram is just two draws from X, often written X^2 . $H(X^2) = 2H(X) = 8.22$ bits We could draw pairs of adjacent characters from English text. When predicting such a pair, how many effective choices do we have? More than when we had $\mathcal{A}_X = \{\mathbf{a-z}, -\}$: we have to pick the first character and another character. But the second choice is easier. We expect $H(X) < H(X') < 2H(X)$. Maybe 7 bits? Looking at a large text file the actual answer is about 7.6 bits. This is ≈ 3.8 bits/character — better compression than before. Shannon (1948) estimated about 2 bits/character for English text. Shannon (1951) estimated about 1 bits/character for English text. Compression performance results from the quality of a probabilistic model and the compressor that uses it.	Ask people to guess letters in a newspaper headline: $k \cdot i \cdot d \cdot s \cdot _m \cdot a \cdot k \cdot e \cdot _n \cdot u \cdot t \cdot r \cdot i \cdot t \cdot i \cdot o \cdot u \cdot s \cdot _s \cdot n \cdot a \cdot c \cdot k \cdot s$ $11 \cdot 4 \cdot 2 \cdot 1 \cdot 1 \cdot 4 \cdot 2 \cdot 4 \cdot 1 \cdot 1_{15} \cdot 5 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 \cdot 1_{16} \cdot 7 \cdot 1 \cdot 1 \cdot 1$ Numbers show # guess required by 2010 class \Rightarrow "effective number of choices" or entropy varies <i>hugely</i> We need to be able to use a different probability distribution for every context Sometimes many letters in a row can be predicted at minimal cost: need to be able to use < 1 bit/character. (MacKay Chapter 6 describes how numbers like those above could be used to encode strings.)	Advanced Search Language Tools Advanced Search Language Tools Advanced Search Language Tools Advanced Search Language Tools Marchight Search Language Tools m m m m m m m m m
Cliché Predictions	A more boring prediction game	Arithmetic Coding
kids make n kids make nutritious snacks Cooge Search m Feeing Lucky Advettsing Programme Business Solutions About Coogle Condocted conditions Advettsing Programmes Business Solutions About Coogle Condocted conditions	"I have a binary string with bits that were drawn i.i.d Predict away!" What fraction of people, f , guess next bit is '1'? Bit: 1 1 1 1 1 1 1 1 $f: \approx 1/2 \approx 1/2 \approx 1/2 \approx 2/3 \ldots \ldots \approx 1$ The source was genuinely i.i.d.: each bit was independent of past bits. We, not knowing the underlying flip probability, learn from experience. Our predictions depend on the past. So should our compression systems.	For better diagrams and more detail, see MacKay Ch. 6 Consider all possible strings in alphabetical order (If infinities scare you, all strings up to some maximum length) Example: $A_X = \{a, b, c, \boxtimes\}$ Where ' \boxtimes ' is a special End-of-File marker. \boxtimes $a\boxtimes$, $aa\boxtimes$, \cdots , $ab\boxtimes$, \cdots , $ac\boxtimes$, \cdots $b\boxtimes$, $ba\boxtimes$, \cdots , $bb\boxtimes$, \cdots , $bc\boxtimes$, \cdots $c\boxtimes$, $ca\boxtimes$, \cdots , $cb\boxtimes$, \cdots , $cc\boxtimes$, \cdots , $cccccccc\boxtimes$
Arithmetic Coding	Arithmetic Coding	Arithmetic Coding
We give all the strings a binary codeword Huffman merged leaves — but we have too many to do that Create a tree of strings 'top-down': $ \int_{a_{1}}^{a_{1}a_{1}} \frac{x_{1}x_{2}}{x_{1}x_{2}} \int_{a_{1}a_{1}}^{a_{1}a_{1}} \frac{x_{1}x_{2}}{x_{1}x_{2}} \int_{a_{1}a_{1}}^{a_{1$	Both string tree and binary codewords index intervals $\in [0, 1]$ $p(\becabub B') \int \dots \int b B' f(\becabub B') \int \dots \int b B' f(\becab B') \int \dots \int b B' f(\bec$	Overlay string tree on binary symbol code tree $bec \stackrel{\text{def}}{\hline }$ $\hline \hline \\ \hline$
	codeword that lies entirely within this interval.	Look at $P(x_2 x_1 = \mathbf{b})$ can't start encoding 'ba' either

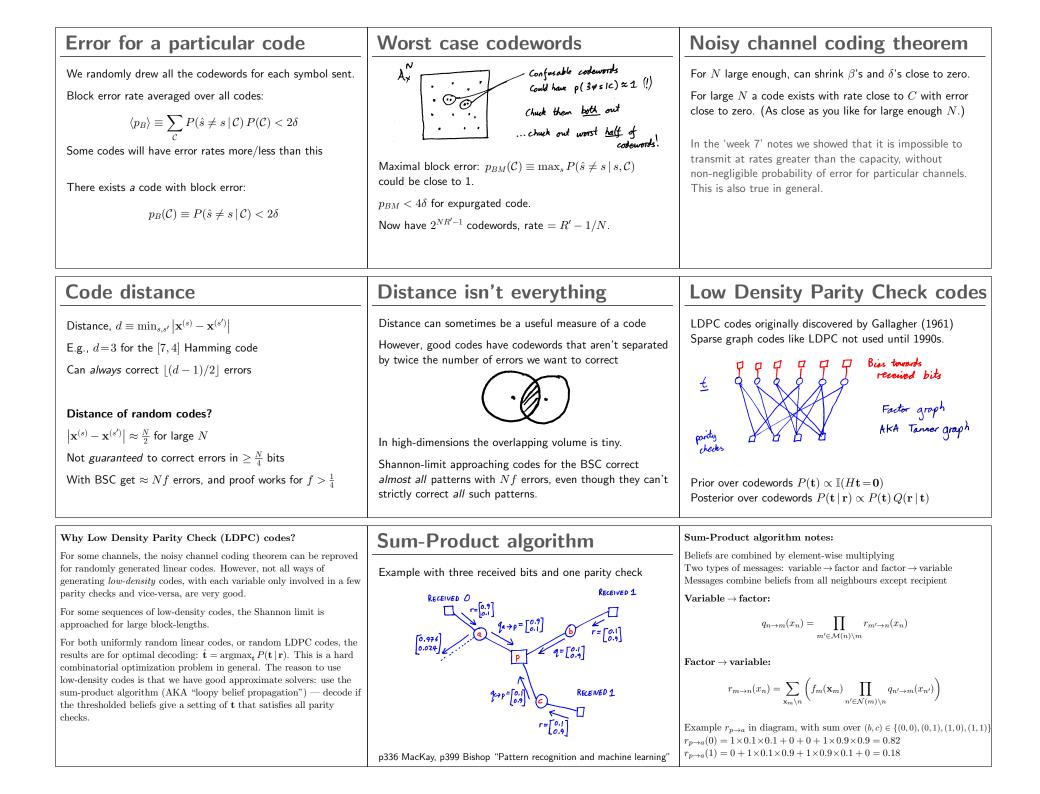
The card game model	Inferring the card	Predicting the next outcome
Cards: 1) $\mathbb{B} \mathbb{W}$, 2) $\mathbb{B} \mathbb{B}$, 3) $\mathbb{W} \mathbb{W}$ $P(c) = \begin{cases} 1/3 & c = 1, 2, 3\\ 0 & \text{otherwise.} \end{cases}$ $P(x_1 = \mathbb{B} \mid c) = \begin{cases} 1/2 & c = 1\\ 1 & c = 2\\ 0 & c = 3 \end{cases}$ Bayes rule can 'invert' this to tell us $P(c \mid x_1 = \mathbb{B})$; infer the generative process for the data we have.	$\begin{array}{ c c c } \hline \textbf{Cards:} & 1 \end{pmatrix} \mathbb{B} \mathbb{W}, & 2 \end{pmatrix} \mathbb{B} \mathbb{B}, & 3 \end{pmatrix} \mathbb{W} \mathbb{W} \\ P(c \mid x_1 = \mathbb{B}) &= \frac{P(x_1 = \mathbb{B} \mid c) \ P(c)}{P(x_1 = \mathbb{B})} \\ &\propto \begin{cases} 1/2 \cdot 1/3 = 1/6 c = 1 \\ 1 \cdot 1/3 = 1/3 c = 2 \\ 0 \qquad c = 3 \end{cases} \\ &= \begin{cases} 1/3 c = 1 \\ 2/3 c = 2 \end{cases} \\ \hline \textbf{Q} \text{``But aren't there two options given a black face, so it's 50-50?''} \\ \textbf{A} \text{ There are two options, but the likelihood for one of them is 2× bigger} \end{cases}$	For this problem we can spot the answer, for more complex problems we want a formal means to proceed. $P(x_2 \mid x_1 = B)?$ Need to introduce c to use expressions we know: $P(x_2 \mid x_1 = B) = \sum_{c \in 1, 2, 3} P(x_2, c \mid x_1 = B)$ $= \sum_{c \in 1, 2, 3} P(x_2 \mid x_1 = B, c) P(c \mid x_1 = B)$ Predictions we would make if we knew the card, weighted by the posterior probability of that card. $P(x_2 \mid x_1 = B) = \sum_{c \in 1, 2, 3} P(x_2 \mid x_1 = B, c) P(c \mid x_1 = B)$
$ \begin{array}{l} \textbf{Strategy for solving inference and prediction problems:} \\ \textbf{When interested in something } y, we often find we can't immediately write down mathematical expressions for P(y \mid \text{data}). So we introduce stuff, z, that helps us define the problem: P(y \mid \text{data}) = \sum_z P(y, z \mid \text{data}) \\ \textbf{by using the sum rule. And then split it up: } \\ P(y \mid \text{data}) = \sum_z P(y \mid z, \text{data}) P(z \mid \text{data}) \\ \textbf{using the product rule. If knowing extra stuff } z we can predict y, we are set: weight all such predictions by the posterior probability of the stuff (P(z \mid \text{data}), \text{found with Bayes rule}). \\ \textbf{Sometimes the extra stuff summarizes everything we need to know to make a prediction: } \\ P(y \mid z, \text{data}) = P(y \mid z) \\ \textbf{although not in the card game above.} \\ \end{array}$	<pre>Not convinced? Not everyone believes the answer to the card game question. Sometimes probabilities are counter-intuitive. I'd encourage you to write simulations of these games if you are at all uncertain. Here is an Octave/Matlab simulator I wrote for the card game question: cards = [1 1; 00; 10]; num_cards = size(cards, 1); N = 0; % Number of times first face is black kk = 0; % Out of those, how many times the other side is white for trial = 1:166 card = ceil(num_cards * rand()); face = 1 + (rand < 0.5); other_face = (face=1) + 1; x1 = cards(card, other_face); if x1 == 0</pre>	Sparse files $\mathbf{x} = 000010000100000000000000000000000000$
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	The Beta(α, β) distribution is a standard probability distribution over a variable $f \in [0, 1]$ with parameters α and β . The dependence of the probability density on f is summarized by: Beta($f; \alpha, \beta$) $\propto f^{(\alpha-1)}(1-f)^{(\beta-1)}$. The $1/B(\alpha, \beta) = \Gamma(\alpha + \beta)/(\Gamma(\alpha)\Gamma(\beta))$ term, which is $(\alpha + \beta - 1)!/((\alpha - 1)!(\beta - 1)!)$ for integer α and β , makes the distribution normalized (integrate to one). Here, it's just some constant with respect to the parameter f . For comparison, perhaps you are more familiar with a Gaussian (or Normal), $\mathcal{N}(\mu, \sigma^2)$, a probability distribution over a variable $x \in [-\infty, \infty]$, with parameters μ and σ^2 . The dependence of the probability density on x is summarized by $\mathcal{N}(x; \mu, \sigma^2) \propto \exp(-0.5(x-\mu)^2/\sigma^2)$. We divide this expression by $\int \exp(-0.5(x-\mu)^2/\sigma^2) dx = \sqrt{2\pi\sigma^2}$ to make the distribution normalized.	We found that our posterior beliefs, given observations, are proportional to $f^k(1-f)^{N-k}$ and we know $f \in [0,1]$. Given the form of the f dependence, the posterior distribution must be a Beta distribution. We obtain the parameters α and β by comparing the powers of f and $(1-f)$ in the posterior and in the definition of the Beta distribution. Comparing terms and reading off the answer is easier than doing integration to normalize the distribution from scratch, as in equations 3.11 and 3.12 of MacKay, p52. Again for comparison: if you were trying to infer a real-valued parameter $y \in [-\infty, \infty]$, and wrote down a posterior: $p(y \mid D) \propto p(D \mid y) p(y)$ and found $p(y \mid D) \propto \exp(-ay^2 + by)$ for some constants a and b , you could state that $p(y \mid D) = \exp(-ay^2 + by)/Z$, and derive that the constant must be $Z = \int \exp(-ay^2 + by) dy = \dots$. Alternatively, you could realize that a quadratic form inside an exp is a Gaussian distribution. Now you just have identify its parameters. As $\mathcal{N}(y; \mu, \sigma^2) \propto \exp(-0.5(y - \mu)^2/\sigma^2) \propto \exp(-0.5y^2/\sigma^2 + (\mu/\sigma^2)y)$, we can identify the parameters of the posterior: $\sigma^2 = 1/(2a)$ and $\mu = b\sigma^2 = b/(2a)$.

References on inferring a probability	Prediction	Laplace's law of succession
The 'bent coin' is discussed in MacKay $\S 3.2, p51$		
See also Ex. 3.15, p59, which has an extensive worked solution.	Prediction rule from marginalization and product rules:	$P(x_{N+1}=1 \mid \mathbf{x}) = \frac{k+1}{N+2}$
The MacKay section mentions that this problem is the one studied by Thomas Bayes, published in 1763. This is true, although the problem was described in terms of a game played on a Billiard table.	$P(x_{N+1} \mathbf{x}) = \int P(x_{N+1} f, \mathbf{x}) \cdot p(f \mathbf{x}) \mathrm{d}f$	Maximum Likelihood (ML): $\hat{f} = \operatorname{argmax}_{f} P(\mathbf{x} f) = \frac{k}{N}$. ML estimate is <i>unbiased</i> : $\mathbb{E}[\hat{f}] = f$.
The Bayes paper has historical interest, but without modern mathematical notation takes some time to read. Several versions can be found around the web. The original version has old-style typesetting. The paper was retypeset, but with the original long arguments, for Biometrica in 1958: http://dx.doi.org/10.1093/biomet/45.3-4.296	The boxed dependence can be omitted here. $P(x_{N+1}=1 \mid \mathbf{x}) = \int f \cdot p(f \mid \mathbf{x}) \mathrm{d}f = \mathbb{E}_{p(f \mid \mathbf{x})}[f] = \frac{k+1}{N+2}.$	Laplace's rule is like using the ML estimate, but imagining we saw a 0 and a 1 before starting to read in \mathbf{x} . Laplace's rule biases probabilities towards $1/2$. ML estimate assigns zero probability to unseen symbols. Encoding zero-probability symbols needs ∞ bits.
New prior / prediction rule	Large pseudo-counts	Fractional pseudo-counts
	Beta(20,10) distribution:	
Could use a Beta prior distribution:		Beta(0.2,0.2) distribution:
$p(f) = \operatorname{Beta}(f; \ n_1, \ n_0)$		20
$p(f \mid \mathbf{x}) \propto f^{k+n_1-1} (1-f)^{N-k+n_0-1}$ = Beta $(f; k+n_1, N-k+n_0)$		
$P(x_{N+1}=1 \mid \mathbf{x}) = \mathbb{E}_{p(f \mid \mathbf{x})}[f] = \frac{k+n_1}{N+n_0+n_1}$	f Mean: 2/3	Mean: $1/2$ — notice prior says more than a guess of $f = 1/2$
	This prior says f close to 0 and 1 are very improbable	f is probably close to 0 or 1 but we don't know which yet
Think of n_1 and n_0 as previously observed counts ($n_1=n_0=1$ gives uniform prior and Laplace's rule)	We'd need $\gg 30$ observations to change our mind (to over-rule the prior, or pseudo-observations)	One observation will rapidly change the posterior
Fractional pseudo-counts	Larger alphabets	More notes on the Dirichlet distribution
Beta(1.2,0.2) distribution:	i.i.d. symbol model:	The thing to remember is that a Dirichlet is proportional to $\prod_i p_i^{\alpha_i-1}$. The posterior $p(\mathbf{p} \mathbf{x}, \boldsymbol{\alpha}) \propto P(\mathbf{x} \mathbf{p}) p(\mathbf{p} \boldsymbol{\alpha})$ will then be Dirichlet with the α_i 's increased by the observed counts.
40	$P(\mathbf{x} \mathbf{p}) = \prod_i p_i^{k_i}, \qquad ext{where } k_i = \sum_n \mathbb{I}(x_n = a_i)$	Details (for completeness): $B(\alpha)$ is the Beta function $\frac{\prod_i \Gamma(\alpha_i)}{\Gamma(\sum_i \alpha_i)}$.
(1) d 20	The k_i are counts for each symbol.	I left the $0 \le p_i \le 1$ constraints implicit. The $\delta(1 - \sum_i p_i)$ term constraints the distribution to the 'simplex', the region of a hyper-plane where $\sum_i p_i = 1$. But I can't omit this Dirac-delta,
0 0.2 0.4 0.6 0.8 1 f	Dirichlet prior , generalization of Beta: $p(\mathbf{p} \mid \boldsymbol{\alpha}) = \text{Dirichlet}(\mathbf{p}; \ \boldsymbol{\alpha}) = \frac{\delta(1-\sum_{i} p_{i})}{B(\boldsymbol{\alpha})} \prod p_{i}^{\alpha_{i}-1}$	because it is infinite when evaluated at a valid probability vector(!). The density over just the first $(I-1)$ parameters is finite, obtained by integrating out the last parameter:
Posterior from previous prior and observing a single 1	Dirichlet predictions (Lidstone's law):	$p(\mathbf{p}_{j$
	$P(x_{N+1}=a_i \mathbf{x}) = \frac{k_i + \alpha_i}{N + \sum_j \alpha_j}$ Counts k_i are added to pseudo-counts α_i . All $\alpha_i = 1$ gives Laplace's rule.	There are no infinities, and the relation to the Beta distribution is now clearer, but the expression isn't as symmetric.

Reflection on Compression	Structure	Why not just fit p?
Take any complete compressor. If "incomplete" imagine an improved "complete" version. Complete codes: $\sum_{\mathbf{x}} 2^{-\ell(\mathbf{x})} = 1$, \mathbf{x} is whole input file Interpretation: implicit $Q(\mathbf{x}) = 2^{-\ell(bx)}$ If we believed files were drawn from $P(\mathbf{x}) \neq Q(\mathbf{x})$ we would expect to do $D(P Q) > 0$ bits better by using $P(\mathbf{x})$. Compression is the modelling of probabilities of files. If we think our compressor should 'adapt', we are making a statement about the structure of our beliefs, $P(\mathbf{x})$.	For any distribution: $P(\mathbf{x}) = P(x_1) \prod_{n=2}^{N} P(x_n \mathbf{x}_{< n})$ For i.i.d. symbols: $P(x_n = a_i \mathbf{p}) = p_i$ $P(x_n \mathbf{x}_{< n}) = \int P(\mathbf{x}_n \mathbf{p}) p(\mathbf{p} \mathbf{x}_{< n}) d\mathbf{p}$ $P(x_n = a_i \mathbf{x}_{< n}) = \mathbb{E}_{p(\mathbf{p} \mathbf{x}_{< n})}[p_i]$ we saw: easy-to-compute from counts with a Dirichlet prior. i.i.d. assumption is often terrible: want different structure. Even then, do we need to specify priors (like the Dirichlet)?	Run over file \rightarrow counts k Set $p_i = \frac{k_i}{N}$, (Maximum Likelihood, and obvious, estimator) Save (\mathbf{p}, \mathbf{x}) , \mathbf{p} in a header, \mathbf{x} encoded using \mathbf{p} Simple? Prior-assumption-free?
Fitting cannot be optimal	Fitting isn't that easy!	Richer models
When fitting, we never save a file (\mathbf{p}, \mathbf{x}) where $p_i \neq \frac{k_i(\mathbf{x})}{N}$ Informally: we are encoding \mathbf{p} twice More formally: the code is incomplete However, gzip and arithmetic coders are incomplete too, but they are still useful! In some situations the fitting approach is very close to optimal	Setting $p_i = \frac{k_i}{N}$ is easy. How do we encode the header? Optimal scheme depends on $p(\mathbf{p})$; need a prior! What precision to send parameters? Trade-off between header and message size. Interesting models will have many parameters. Putting them in a header could dominate the message. Having both ends learn the parameters while {en,de}coding the file avoids needing a header. For more (non-examinable) detail on these issues see MacKay p352–353	Images are not bags of i.i.d. pixels Text is not a bag of i.i.d. characters/words (although many "Topic Models" get away with it!) Less restrictive assumption than: $P(x_n \mathbf{x}_{< n}) = \int P(\mathbf{x}_n \mathbf{p}) p(\mathbf{p} \mathbf{x}_{< n}) d\mathbf{p}$ is $P(x_n \mathbf{x}_{< n}) = \int P(\mathbf{x}_n \mathbf{p}_{C(\mathbf{x}_{< n})}) p(\mathbf{p}_{C(\mathbf{x}_{< n})} \mathbf{x}_{< n}) d\mathbf{p}_{C(\mathbf{x}_{< n})}$ Probabilities depend on the local context, <i>C</i> : — Surrounding pixels, already {en,de}coded — Past few characters of text
Image contexts	A good image model?	Context size
$P(x_i = \text{Black} C) = \frac{k_{\text{B} C} + \alpha}{N_C + \alpha \mathcal{A} } = \frac{2 + \alpha}{7 + 2\alpha}$ There are 2^p contexts of size p binary pixels Many more counts/parameters than i.i.d. model	The context model isn't far off what several real image compression systems do for binary images.	<pre>How big to make the context?</pre>

Binary Symmetric Channel (BSC)	Binary Erasure Channel (BEC)	Z channel
A natural model channel for binary data:	An example of a non-binary alphabet:	Cannot always treat symbols symmetrically
$x \stackrel{O}{\xrightarrow{1-5}} \stackrel{I-5}{\xrightarrow{5}} \stackrel{O}{\xrightarrow{1-5}} \qquad Q = \begin{bmatrix} I-5 & 5\\ 5 & I-5 \end{bmatrix}, 3$	$x \in A_{x} 0 \xrightarrow{1-5} 0 \qquad \begin{array}{c} y \in A_{Y} = \{0, 2, ?\} \\ \downarrow & \uparrow & ? \\ \downarrow & \uparrow & \uparrow & ? \\ \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\ \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\ \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\ 0 & \downarrow & \uparrow & \downarrow \end{array}$	$\begin{array}{c} 0 \xrightarrow{1} \\ x \\ 1 \xrightarrow{1-5} \\ 1 \xrightarrow{1-5} \end{array} \qquad $
Alternative view: $ \begin{pmatrix} 1-f & n=0 \end{pmatrix} $	With this channel corruptions are obvious	"Ink gets rubbed off, but never added"
noise drawn from $p(n) = \begin{cases} 1 - f & n = 0 \\ f & n = 1 \end{cases}$ $y = (x+n) \mod 2 = x \text{ XOR } n$	Feedback: could ask for retransmission Care required: negotiation could be corrupted too Feedback sometimes not an option: hard disk storage	
<pre>% Matlab/Octave /* C (or Python) */ y = mod(x+n, 2); y = (x+n) % 2; y = bitxor(x, n); y = x ^ n;</pre>	The BEC is not the <i>deletion channel</i> . Here symbols are replaced with a placeholder, in the deletion channel they are removed entirely and it is no longer clear at what time symbols were transmitted.	
Channel Probabilities	A little more detail on channel probabilities: More detail on why the output distribution can be found by a matrix multiplication:	Channels and Information
Channel definition: $Q_{j i} = P(y = b_j x = a_i)$	$p_{Y,j} = P(y = b_j) = \sum_i P(y = b_j, x = a_i)$	Three distributions: $P(x)$, $P(y)$, $P(x,y)$ Three observers: sender, receiver, omniscient outsider
Assume there's nothing we can do about Q . We can choose what to throw at the channel.	$= \sum_{i} P(y=b_j x=a_i) P(x=a_i)$ $= \sum_{i} Q_{j i} p_{X,i}$	Average surprise of receiver: $H(Y) = \sum_y P(y) \log 1/P(y)$ Partial information about sent file and added noise
Input distribution: $\mathbf{p}_X = \begin{pmatrix} p(x=a_1) \\ \vdots \\ p(x=a_I) \end{pmatrix}$	$\mathbf{p}_Y = Q \mathbf{p}_X$	Average information of file: $H(X) = \sum_x P(x) \log 1/P(x)$ Sender observes all of this, but no information about noise
Joint distribution: $P(x, y) = P(x) P(y x)$ Output distribution: $P(y) = \sum_{x} P(x, y)$	Care: some texts (but not MacKay) use the transpose of our Q as the transition matrix, and so use left-multiplication instead.	Omniscient outsider experiences total joint entropy of file and noise: $H(X,Y) = \sum_{x,y} P(x,y) \log 1/P(x,y)$
vector notation: $\mathbf{p}_Y = Q \mathbf{p}_X$ (the usual relationships for any two variables x and y)		~
Joint Entropy	Mutual Information (1)	Inference in the channel
Omniscient outsider gets more information on average than an observer at one end of the channel: $H(X,Y) \ge H(X)$ Outsider can't have more information than both ends combined:	How much too big is $H(X) + H(Y) \neq H(X,Y)$? Overlap: $I(X;Y) = H(X) + H(Y) - H(X,Y)$ is called the mutual information	The receiver doesn't know x , but on receiving y can update the prior $P(x)$ to a posterior: $P(x \mid y) = \frac{P(x,y)}{P(y)} = \frac{P(y \mid x) P(x)}{P(y)}$
$H(X,Y) \leq H(X) + H(Y)$ with equality only if X and Y are independent (independence useless for communication!)	H(X,Y)	e.g. for BSC with $P(x=1) = 0.5$, $P(x y) = \begin{cases} 1 & -f & x=0 \\ f & x=1 \end{cases}$ other channels may have less obvious posteriors Another distribution we can compute the entropy of!
	It's the average information content "shared" by the dependent X and Y ensembles. (more insight to come)	

Conditional Entropy (1)	Conditional Entropy (2)	Conditional Entropy (3)	
We can condition every part of an expression on the setting of an arbitrary variable: $H(X \mid y) = \sum_{x} P(x \mid y) \log \frac{1}{P(x \mid y)}$ Average information available from seeing x , given that we already know y . On average this is written: $H(X \mid Y) = \sum_{y} P(y) H(X \mid y) = \sum_{x,y} P(x,y) \log \frac{1}{P(x \mid y)}$	Similarly $H(Y \mid X) = \sum_{x,y} P(x,y) \log 1/P(y \mid x)$ is the average uncertainty about the output that the sender has, given that she knows what she sent over the channel. Intuitively this should be less than the average surprise that the receiver will experience, $H(Y)$.	The chain rule for entropy: $H(X,Y) = H(X) + H(Y \mid X) = H(Y) + H(X \mid Y)$ "The average coding cost of a pair is the same regardless of whether you treat them as a joint event, or code one and then the other." Proof: $H(X,Y) = \sum_{x} \sum_{y} p(x) p(y \mid x) \left[\log \frac{1}{p(x)} + \log \frac{1}{p(y \mid x)} \right]$ $= \sum_{x} p(x) \log \frac{1}{p(x)} \sum_{y} p(y \mid x)^{-1} + \sum_{x} \sum_{y} p(x, y) \log \frac{1}{p(y \mid x)}$	
Mutual Information (2) H(X,Y) $H(X)$ $H(Y)$ $H(Y)$ $H(Y)$ $H(Y)$ The receiver thinks: $I(X;Y) = H(X) - H(X Y)The mutual information is, on average, the informationcontent of the input minus the part that is still uncertainafter seeing the output. That is, the average informationthat we can get about the input over the channel.I(X;Y) = H(Y) - H(Y X)$ is often easier to calculate	The CapacityWhere are we going? $I(X;Y)$ depends on the channel and input distribution \mathbf{p}_X The Capacity: $C(Q) = \max_{\mathbf{p}_X} I(X;Y)$ C gives the maximum average amount of information we can get in one use of the channel.We will see that reliable communication is possible at C bits per channel use.	Lots of new definitions When dealing with extended ensembles, independent identical copies of an ensemble, entropies were easy: $H(X^K) = K H(X)$. Dealing with channels forces us to extend our notions of information to collections of dependent variables. For every joint, conditional and marginal probability we have a different entropy and we'll want to understand their relationships. Unfortunately this meant seeing a lot of definitions at once. They are summarized on pp138–139 of MacKay. And also in the following tables.	


The probabilities associated with a channel		Corresponding information measures		sures	Ternary confusion channel	
Very little of this is special to channels, it's mostly results for any pair of dependent random variables.		H(X)	$\sum_{x} p(x) \log 1/p(x)$	Ave. info. content of source Sender's ave. surprise on seeing x		
Distribution	Where from?	Interpretation / Name	H(Y)	$\sum_{y} p(y) \log 1/p(y)$	Ave. info. content of output Partial info. about x and noise	$a \xrightarrow{1} 0$
$\begin{array}{c} P(x) \\ P(y \mid x) \end{array}$	We choose Q , channel definition		H(X,Y)	$\sum_{x,y} p(x,y) \log \frac{1}{p(x,y)}$	Ave. surprise of receiver Ave. info. content of (x, y)	$a \xrightarrow{1}_{\frac{1}{2}} 0$ $b \xrightarrow{\frac{1}{2}}_{\frac{1}{2}} 1$ $Q = \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix}, 3$
P(x,y)	$p(y \mid x) p(x)$	Sender's beliefs about output Omniscient outside observer's	//		or "source and noise". Ave. surprise of outsider	-
P(y)	$\sum_{x} p(x, y) = Q \mathbf{p}_X$	joint distribution (Marginal) output distribution	$H(X \mid Y)$	$\sum_{x,y} p(x \mid y) \log \frac{1}{p(x \mid y)}$ $\sum_{x,y} p(x,y) \log \frac{1}{p(x \mid y)}$	Uncertainty after seeing output Average, $\mathbb{E}_{p(y)}[H(X \mid y)]$	Assume $\mathbf{p}_X = [1/3, 1/3, 1/3]$. What is $I(X; Y)$?
$P(x \mid y)$	p(y x) p(x) / p(y)	Receiver's beliefs about input. "Inference"	$ \begin{array}{l} H(Y \mid X) \\ I(X;Y) \end{array} $	$\sum_{x,y} p(x,y) \log \frac{1}{p(y x)}$ $H(X) + H(Y) - H(X,Y)$	Sender's ave. uncertainty about y 'Overlap' in ave. info. contents	$H(X) - H(X Y) = H(Y) - H(Y X) = 1 - \frac{1}{3} = \frac{2}{3}$
				$H(X) - H(X \mid Y)$	Ave. uncertainty reduction by y Ave info. about x over channel.	Optimal input distribution: $\mathbf{p}_X = [1/2, 0, 1/2]$
				$H(Y) - H(Y \mid X)$	Often easier to calculate	For which $I(X;Y) = 1$, the <i>capacity</i> of the channel.
			And review	w the diagram relating all	these quantities!	

Information Theory	Mutual Information revisited	Concavity of Entropy
http://www.inf.ed.ac.uk/teaching/courses/it/ Week 7 Noisy channel coding lain Murray, 2012	Verify for yourself: $I(X;Y) = D_{KL}(p(x,y) p(x) p(y))$ Mutual information is non-negative: $H(X) - H(X Y) = I(X;Y) \ge 0$, Proof: Gibbs' inequality Conditioning cannot increase uncertainty on average	Consider $H(X) \ge H(X \mid C)$ for the special case: $p(c) = \begin{cases} \lambda & c = 1\\ 1 - \lambda & c = 2 \end{cases}$ $p(x \mid c = 1) = p_1(x), p(x \mid c = 2) = p_2(x)$ $p(x) = \lambda p_1(x) + (1 - \lambda)p_2(x)$ which implies the entropy is concave: $H(\lambda \mathbf{p}_1 + (1 - \lambda)\mathbf{p}_2) \ge \lambda H(\mathbf{p}_1) + (1 - \lambda)H(\mathbf{p}_2)$
School of Informatics, University of Edinburgh		
Concavity of $I(X;Y)$ $I(X;Y) = H(Y) - H(Y X)$ $= H(Q\mathbf{p}_X) - \mathbf{p}_X^T H(Y x)$ First term concave in \mathbf{p}_X (concave function of linear transform)Second term linear in \mathbf{p}_X Mutual Information is concave in input distributionIt turns out that $I(X;Y)$ is convex in the channelparamters Q . Reference: Cover and Thomas §2.7.	Noisy typewriter See the fictitious noisy typewriter model, MacKay p148 For Uniform input distribution: $\mathbf{p}_X = [1/27, 1/27, \dots 1/27]^\top$ $H(X) = \log(27)$ $p(x y = \mathbf{B}) = \begin{cases} 1/3 & x = \mathbf{A} \\ 1/3 & x = \mathbf{B} \\ 1/3 & x = \mathbf{C} \\ 0 & \text{otherwise.} \end{cases}$ $H(X Y) = \mathbb{E}_{p(y)}[H(X y)] = \log 3$ $I(X;Y) = H(X) - H(X Y) = \log 27/3 = \log_2 9 \text{ bits}$	Noisy Typewriter Capacity: In fact, the capacity: $C = \max_{\mathbf{p}_X} I(X;Y) = \log_2 9$ bits Proof: any asymmetric input distribution can be shifted by any number of characters to get new distributions with the same mutual information (by symmetry). Because $I(X;Y)$ is concave, any convex combination of these distributions will have performance as good or better. The uniform distribution is the average of all the shifted distributions, so can be no worse than any asymmetric distribution. Under the uniform input distribution, the receiver infers 9 bits of information about the input. Shannon's theory will tell us that this is the fastest rate that we can communicate information without error. For this channel there is a simple way of achieving error-less communication at this rate: only use 9 of the inputs as on the next slide. Confirm that the mutual information for this input distribution is also $\log_2 9$ bits.
Non-confusable inputs	The challenge	Extensions of the BSC
A A B C C C C C C C C C C C C C	Most channels aren't as easy-to-use as the typewriter. How to communicate without error with messier channels? Idea: use N^{th} extension of channel: Treat N uses as one use of channel with Input $\in \mathcal{A}_X^N$ Output $\in \mathcal{A}_Y^N$ For large N a subset of inputs can be non-confusable with high-probability.	$(f = 0.15) \\ (f $

Extensions of the Z channel	Non-confusable typical sets	Do the 4th extensions look like the noisy typewriter?
$(f = 0.15) \\ (f $	$ \begin{array}{c} \mathcal{A}_Y^N \\ \hline \\ \mathbf{Y} \\ $	I think they look like a mess! For the BSC the least confusable inputs are 0000 and 1111 – a simple repetition code. For the Z-channel one might use more inputs if one has a moderate tolerance to error. (Might guess this: the Z-channel has higher capacity.) To get really non-confusable inputs need to extend to larger N. Large blocks are hard to visualize. The cartoon on the previous slide is part of how the noisy channel theorem is proved. We know from source-coding that only some large blocks under a given distribution are "typical". For a given input, only certain outputs are typical (e.g., all the blocks that are within a few bit-flips from the input). If we select only a tiny subset of inputs, codewords, whose typical output sets only weakly overlap. Using these nearly non-confusable inputs will be like using the noisy typewriter. That will be the idea. But as with compression, dealing with large blocks can be impractical. So first we're going to look at some simple, practical error correcting codes.
ISBNs — checksum example On the back of Bishop's Pattern Recognition book: (early printings) ISBN: 0-387-31073-8 Group-Publisher-Title-Check The check digit: $x_{10} = x_1 + 2x_2 + 3x_3 + \dots + 9x_9 \mod 11$ Matlab/Octave: mod((1:9)*[0 3 8 7 3 1 0 7 3]', 11) Numpy: dot([0,3,8,7,3,1,0,7,3], r_[1:10]) % 11 Questions: — Why is the check digit there? — $\sum_{i=1}^{9} x_i \mod 10$ would detect any single-digit error. — Why is each digit pre-multiplied by <i>i</i> ? — Why do mod 11, which means we sometimes need X?	 Some people often type in ISBNs. It's good to tell them of mistakes without needing a database lookup to an archive of all books. Not only are all single-digit errors detected, but also transposition of two adjacent digits. The back of the MacKay textbook cannot be checked using the given formula. In recent years books started to get 13-digit ISBN's. These have a different check-sum, performed modulo-10, which doesn't provide the same level of protection. Check digits are such a good idea, they're found on many long numbers that people have to type in, or are unreliable to read: Product codes (UPC, EAN,) Government issued IDs for Tax, Health, etc., the world over. Standard magnetic swipe cards. Airline tickets. Postal barcodes. 	[7,4] Hamming Codes Sends K = 4 source bits With N = 7 uses of the channel Can detect and correct any single-bit error in block. My explanation in the lecture and on the board followed that in the MacKay book, p8, quite closely. You should understand how this block code works. To think about: how can we make a code (other than a repetition code) that can correct more than one error?
[N,K] Block codes	Noisy channel coding theorem	Capacity as an upper limit
[7,4] Hamming code was an example of a block code We use $S = 2^K$ codewords (hopefully hard-to-confuse) Rate: # bits sent per channel use: $R = \frac{\log_2 S}{N} = \frac{K}{N}$ Example, repetition code R_3 : N=3, S=2 codewords: 000 and 111. $R = 1/3$. Example, [7,4] Hamming code: $R = 4/7$. Some texts (not MacKay) use ($\log_{ \mathcal{A}_X } S$)/N, the relative rate compared to a uniform distribution on the non-extended channel. I don't use this definition.	Consider a channel with capacity $C = \max_{\mathbf{p}_X} I(X;Y)$ [E.g.'s, Tutorial 5: BSC, $C = 1 - H_2(f)$; BEC $C = 1 - f$] No feed back channel For any desired error probability $\epsilon > 0$, e.g. 10^{-15} , 10^{-30} For any rate $R < C$ 1) There is a block code (N might be big) with error $< \epsilon$ and rate $K/N \ge R$. 2) If we transmit at a rate $R > C$ then there is a non-zero error probability for $R > C$ is found by "rate distortion theory", mentioned in the final lecture, but not part of this course. More detail \$10, hpl67-168, of MacKay, Michan Themas.	It is easy to see that errorless transmission above capacity is impossible for the BSC and the BEC. It would imply we can compress any file to less than its information content. BSC: Take a message with information content $K + NH_2(f)$ bits. Take the first K bits and create a block of length N using an error correction code for the BSC. Encode the remaining bits into N binary symbols with probability of a one being f. Add together the two blocks modulo 2. If the error correcting code can identify the 'message' and 'noise' bits, we have compressed $K + NH_2(f)$ bits into N binary symbols. Therefore, $N > K + NH_2(f) \Rightarrow K/N < 1 - H_2(f)$. That is, $R < C$ for errorless communication. BEC: we typically receive $N(1-f)$ bits, the others having been erased. If the block of N bits contained a message of K bits, and is recoverable, then $K < N(1-f)$, or we have compressed the message to less than K bits. Therefore $K/N < (1-f)$, or $R < C$.

Linear [N,K] codes	Required constraints	<i>H</i> constraints
Hamming code example of linear code: $\mathbf{t} = G^{\top}\mathbf{s} \mod 2$ Transmitted vector takes on one of 2^{K} codewords Codewords satisfy $M = N - K$ constraints: $H\mathbf{t} = 0 \mod 2$ Dimensions: $\mathbf{t} \qquad N \times 1$ $G^{\top} \qquad N \times K$ $\mathbf{s} \qquad K \times 1$ $H \qquad M \times N$	There are $E \approx Nf$ erasures in a block Need E independent constraints to fill in erasures H matrix provides $M = N - K$ constraints. But they won't all be independent. Example: two Hamming code parity checks are: $t_1 + t_2 + t_3 + t_5 = 0$ and $t_2 + t_3 + t_4 + t_6 = 0$	Q. Why would we choose H with redundant rows? A. We don't know ahead of time which bits will be erased. Only at decoding time do we set up the M equations in the E unknowns. For H filled with $\{0, 1\}$ uniformly at random, we expect to get E independent constraints with only $M = E+2$ rows. Recall $E \approx Nf$. For large N , if $f < M/N$ there will be enough constraints with high probability.
For the BEC, choosing constraints H at random makes communication approach capacity for large $N!$	We could specify 'another' constraint: $t_1 + t_4 + t_5 + t_6 = 0$ But this is the sum (mod 2) of the first two, and provides no extra checking.	Errorless communication possible if $f < (N-K)/N = 1 - R$ or if $R < 1-f$, i.e., $R < C$. A large random linear code achieves capacity.
Details on finding independent constraints:	Packet erasure channel	Digital fountain (LT) code
Imagine that while checking parity conditions, a row of H at a time, you have seen n independent constraints so far. $P(\text{Next row of } H \text{ useful}) = 1 - 2^n/2^E = 1 - 2^{n-E}$ There are 2^E possible equations in the unknowns, but 2^n of those are combinations of the n constraints we've already seen. Expect number of wasted rows before we see E constraints: $\sum_{n=0}^{E-1} \left(\frac{1}{1-2^{n-E}}-1\right) = \sum_{n=0}^{E-1} \frac{1}{2^{E-n}-1} = 1 + \frac{1}{3} + \frac{1}{7} + \dots$	Split a video file into $K = 10,000$ packets and transmit Some might be lost (dropped by switch, fail checksum,) Assume receiver knows the identity of received packets: — Transmission and reception could be synchronized — Or large packets could have unique ID in header If packets are 1 bit, this is the BEC.	Packets are sprayed out continuously Receiver grabs any $K' > K$ of them (e.g., $K' \approx 1.05K$) Receiver knows packet IDs n , and encoding rule Encoding packet n : Sample d_n pseudo-randomly from a degree distribution $\mu(d)$ Pick d_n pseudo-random source packets Bitwise add them mod 2 and transmit result.
(The sum is actually about 1.6)	Digital fountain methods provide cheap, easy-to-implement codes for erasure channels. They are <i>rateless</i> : no need to specify M , just keep getting packets. When slightly more than K have been received, the file can be decoded.	Decoding: 1. Find a check packet with $d_n = 1$ Use that to set corresponding source packet Subtract known packet from all checks Degrees of some check packets reduce by 1. GoTo 1.
LT code decoding	Soliton degree distribution	Number of packets to catch
a) $\stackrel{s_1 s_2 s_3}{\longrightarrow}$ b) $\stackrel{1}{\longrightarrow}$ c) $\stackrel{1}{\longrightarrow}$ $\stackrel{1}{\longrightarrow}$ b) $\stackrel{1}{\longrightarrow}$ c) $\stackrel{1}{\longrightarrow}$ \mathbf	Ideal wave of decoding always has one $d\!=\!1$ node to remove "Ideal soliton" does this in expectation: $\rho(d) = \begin{cases} 1/K & d=1\\ 1/d(d-1) & d=2,3,\ldots,K \end{cases}$ (Ex. 50.2 explains how to show this.) A robustified version, $\mu(d)$, ensures decoding doesn't stop and all packets get connected. Still get $R \to C$ for large K .	K = 10,000 source packets Numbers of transmitted packets required for decoding on random trials for three different packet distributions.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A Soliton wave was first observed in 19 C Scotland on the Union Canal.	10000 10500 11000 11500 12000 MacKay, p593

Reed–Solomon codes (sketch mention) Widely used: e.g. CDs, DVDs, Digital TV k message symbols \rightarrow coefficients of degree $k-1$ polynomial Evaluate polynomial at $> k$ points and send Some points can be erased: Can recover polynomial with any k points. To make workable, polynomials are defined on Galois fields. Reed–Solomon codes can be used to correct bit-flips as well as erasures: like identifying outliers when doing regression.	Information Theory http://www.inf.ed.ac.uk/teaching/courses/it/ Week 8 Noisy channel coding theorem and LDPC codes Iain Murray, 2012 School of Informatics, University of Edinburgh	Typical sets revisitedWeek 2: looked at $k = \sum_i x_i$, $x_i \sim \text{Bernoulli}(f)$ $p(k) \longrightarrow (\sqrt{n}) \longrightarrow \sqrt{n}$ $p(k) \longrightarrow \sqrt{n}$ Saw number of 1's is almost always in narrow range around expected number. Indexing this 'typical set' was the cost of compression.
Typical sets: general alphabets More generally look at $\hat{H} = \frac{1}{N} \sum_{i} \log \frac{1}{P(x_{i})}, x_{i} \sim P$ $\begin{pmatrix} f(\hat{H}) \\ \uparrow \\ \downarrow \\ \downarrow$	Source Coding Theorem (MacKay, p82–3 for details) Min probability in $T_{N,\beta}$ is $2^{-N(H(X)+\beta)}$ Therefore typical set has size $\leq 2^{N(H(X)+\beta)}$ For large N can set β small Index almost all strings with $\log_2 2^{NH(X)} = NH(X)$ bits We now extend ideas of typical sets to joint ensembles of inputs and outputs of noisy channels	Jointly typical sequencesFor $n = 1 \dots N$: $x_n \sim \mathbf{p}_X$ Send x over extended channel: $y_n \sim Q_{\cdot x_n}$ Jointly typical: $(\mathbf{x}, \mathbf{y}) \in J_{N,\beta}$ if $\left \frac{1}{N} \log \frac{1}{P(\mathbf{x}, \mathbf{y})} - H(X, Y) \right < \beta$ There are $\leq 2^{N(H(X,Y)+\beta)}$ jointly typical sequences
$\begin{array}{l} \textbf{Chance of being jointly typical} \\ (\mathbf{x}, \mathbf{y}) \text{ from channel are jointly typical with prob } 1-\delta \\ (\mathbf{x}', \mathbf{y}') \text{ generated independently are rarely jointly typical} \\ P(\mathbf{x}', \mathbf{y}' \in J_{N,\beta}) = \sum_{(\mathbf{x}, \mathbf{y}) \in J_{N,\beta}} P(\mathbf{x}) P(\mathbf{y}) \\ &\leq J_{N,\beta} 2^{-N(H(X)-\beta)} 2^{-N(H(Y)-\beta)} \\ &\leq 2^{N(H(X,Y)-H(X)-H(Y)+3\beta)} \\ &\leq 2^{-N(I(X;Y)-3\beta)} \\ &\leq 2^{-N(C-3\beta)}, \text{ for optimal } \mathbf{p}_X \end{array}$	Random typical set code Randomly choose $S = 2^{NR'}$ codewords $\{\mathbf{x}^{(s)}\}$ Decode $\mathbf{y} \rightarrow \hat{s}$ if $(\mathbf{y}, \mathbf{x}^{(\hat{s})}) \in J_{N,\beta}$ and no other $(\mathbf{y}, \mathbf{x}^{(s')}) \in J_{N,\beta}$ A A A_{Y} $(\mathbf{y}, \mathbf{x}^{(s')}) \in J_{N,\beta}$ Prob $(\mathbf{y}, \text{ set jointly typical with any } \underline{x}) = 5$ (small as we like for large N) $(\mathbf{y}, \mathbf{x}^{(s)}) \in J_{N,\beta}$ (small as we like for large N) $(\mathbf{y}, \mathbf{x}^{(s)}) \in J_{N,\beta}$ $(\mathbf{y}, \mathbf{x}$	Error rate averaged over codes Set rate $R' < C-3\beta$. For large N prob. confusion $<\delta$ Total error probability on average $< 2\delta$ Ay Prob (y. not pointly typical with any \underline{x}) = 8 (small as we like for large N) $p(\ge 2 \underline{x}^{(4)}$ jointly typical with y) $\leq (2^{NR'}-1) \cdot 2^{-NK'} - 3\beta$

More Sum-Product algorithm notes:	Information Theory	Course overview
Messages can be renormalized, e.g. to sum to 1, at any time. I did this for the outgoing message from a to an imaginary factor downstream. This message gives the relative beliefs about about the settings of a given the graph we can see:	http://www.inf.ed.ac.uk/teaching/courses/it/	Source coding / compression: — Losslessly representing information compactly — Good probabilistic models \rightarrow better compression
$b_n(x_n) = \prod_{m' \in \mathcal{M}(n)} r_{m' \to n}(x_n)$ The settings with maximum belief are taken and, if they satisfy the parity checks, used as the decoded codeword. The beliefs are the correct posterior marginals if the factor graph is a tree. Empirically the decoding algorithm works well on low-density graphs that aren't trees. Loopy belief propagation is also sometimes used in computer vision and machine learning, however, it will not give accurate or useful answers on all inference/optimization problems! We haven't covered efficient implementation which uses Fourier transform tricks to compute the sum quickly.	Week 9 Hashes and lossy memories Iain Murray, 2012 School of Informatics, University of Edinburgh	 Noisy channel coding / error correcting codes: Add redundancy to transmit without error Large pseudo-random blocks approach theory limits Decoding requires large-scale inference (cf Machine learning) Other topics in information theory Cryptography: not covered here Over capacity: using fewer bits than info. content Rate distortion theory Hashing
Rate distortion theory (taster)	Reversing a block code	Hashing
Q. How do we store N bits of information with $N/3$ binary symbols (or N uses of a channel with $C = 1/3$)? A. We can't without a non-negligible probability of error. But what if we were forced to try?	Swap roles of encoder and decoder for $[N, K]$ block code E.g., Repetition code R_3 Put message through decoder first, transmit, then encode	Hashes reduce large amounts of data into small values (obviously the info. content of a source is not preserved in general) Computers, humans and other animals can do amazing
Idea 1: — Drop ^{2N} / ₃ bits on the floor — Transmit ^N / ₃ reliably — Let the receiver guess the remaining bits	110111010001000 \rightarrow 11000 \rightarrow 111111000000000 111 and 000 sent without error. Other six blocks lead to one error. Error rate = $6/8 \cdot 1/3 = 1/4$, which is $< 1/3$ Slightly more on MacKay p167–8, much more in Cover and Thomas.	things, very quickly, based on tiny amounts of information. Understanding how to use hashes can make progress in cognitive science and practical information systems.
Expected number of errors: $2N/3 \cdot 1/2 = N/3$ Can we do better?	Rate distortion theory plays little role in practical lossy compression systems for (e.g.) images. It's a challenge to find practical coding schemes that respect perceptual measures of distortion.	Some of this is long-established computer science A surprising amount is fertile research ground
Hashing motivational examples: Many animals can do amazing things. While: http://www.google.com/technology/pigeonrank.html was a hoax. The paper on the next slide and others like it are not. It isn't just pigeons. Amazingly humans can do this stuff too. Paul Speller demonstrated that humans can remember to distinguish similar pictures of pigeons over many minutes(!). http://www. webarchive.org.uk/wayback/archive/20100223122414/http: //www.oneandother.co.uk/participants/PaulSpeller How can we build systems that rapidly recall arbitrary labels attached to large numbers of rich but noisy media sources? YouTube has recently done this on a very large scale for copyright enforcement. Some web browsers rapidly prove that a website isn't on a malware black-list without needing to access an external server, or needing an explicit list of all black-listed sites. (False positives can be checked with a request to an external server.)	Journal of Experimental Psychology: American Psychological Association, Inc. Digeon Visual Memory Capacity Milliam Vaughan, Jr., and Sharon L. Greene Harvard University This article reports on four experiments on pigeon visual memory capacity. In the first experiment, pigeons learned to discriminate between 80 pairs of random shapes. Memory for 40 of those pairs was only slightly poorer following 490 days without exposure. In the second experiment, 80 pairs of photographic slides were learned; 629 days without exposure did not significantly disrupt memory. In the third experiment, logons learned to discrimination and to respond appropriately to 40 pairs of slides were learned; 731 days without exposure did not significantly disrupt memory. In the fourth experiment, pigeons learned to respond appropriately to 40 pairs of slides in the normal orientation and to respond in the opposite way when the slides were learned; After an interval of 751 days, there was a transient disruption in discrimination. These experiments demonstrate that pigeons have a heretofore unsuspected capacity with regard to both breadth and stability of memory for abstract stimuli and pictures.	

Remembering images	'Safe browsing'	Information retrieval
skyARUs Experiments Tran PuntiPaulcouk B Aug 155M 1 1 1 1 1 1 1 1 1 1 1 1 1	Reported Attack Page! This web page at the base here reported as an attack page and has been blocked based on your security preferences. Attack page try to install groupmars that steal private information, use your computer to attack others, or damage your system. Some attack page interbinally distribute harmful software, but many are compromised without the knowledge or permission of their owners. Cat me out offere? Why was this page blocked?	
Information retrieval	Information retrieval	Wheel of Fortune, Nov 2010 Hash functions
RICK CATLIN 52.000 PHRASE	HEYSTLE S3,000 HEYSTLE S4,000 HEYSTLE HEYS	A common view: file $\rightarrow b$ bit string (maybe like random bits) hash function hashes john Smith lisa Smith Sam Doe Sam Doe Sam Doe Sandra Dee Many uses: e.g., integrity checking, security, communication with feedback (rsync), indexing for information retrieval
Hash Tables	Bloom Filters	Notes on Bloom filters Probability of false negative is zero
hash keys function hashes John Smith Lisa Smith Sam Doe Sandra Dee List of data at each location. Check each item in list. — Put pointer to data in next available location. Deletions need 'tombstones', rehash when table is full — 'Cuckoo hashing': use > 1 hash and recursively move pointers out of the way to alternative locations.	Hash files multiple times (e.g., 3) Set (or leave) bits equal to 1 at hash locations $\begin{array}{c} x, y, z \\ \hline 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 &$	Probability of false positive depends on number of memory bits, M , and number of hash functions, K . For fixed large M the optimal K (ignoring computation cost) turns out to be the one that sets $\approx 1/2$ of the bits to be on. This makes sense: the memory is less informative if sparse. Other things we've learned are useful too. One way to get a low false positive rate is to make K small but M huge. This would have a huge memory cost except we could compress the sparse bit-vector. This can potentially perform better than a standard Bloom filter (but the details will be more complicated). Google Chrome uses (or at least used to use) a Bloom filter with K=4 for its safe web-browsing feature.

Hashing in Machine Learning

A couple of example research papers

Semantic Hashing (Salakhutdinov & Hinton, 2009)

- Hash bits are "latent variables" underlying data
- 'Semantically' close files \rightarrow close hashes
- Very fast retrieval of 'related' objects

Feature Hashing for Large Scale Multitask Learning, (Weinberger et al., 2009)

- 'Hash' large feature vectors without (much) loss in (spam) classification performance.
- Exploit multiple hash functions to give millions of users personalized spam filters at only about twice the cost (time and storage) of a single global filter(!).