Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 1
Introduction to Information Theory

lain Murray, 2012

School of Informatics, University of Edinburgh

Course structure

Constituents:
— ~17 lectures
— Tutorials starting in week 3
— 1 assignment (20% marks)

Website:
http://tinyurl.com/itmsc
http://www.inf.ed.ac.uk/teaching/courses/it/
Notes, assignments, tutorial material, news (optional RSS feed)

Prerequisites: some maths, some programming ability

Maths background: This is a theoretical course so some general
mathematical ability is essential. Be very familiar with logarithms,
mathematical notation (such as sums) and some calculus.

Probabilities are used extensively: Random variables;
expectation; Bernoulli, Binomial and Gaussian distributions; joint and
conditional probabilities. There will be some review, but expect to
work hard if you don’t have the background.

Programming background: by the end of the course you are
expected to be able to implement algorithms involving probability
distributions over many variables. However, I am not going to teach
you a programming language. I can discuss programming issues in the
tutorials. T won’t mark code, only its output, so you are free to pick a
language. Pick one that’s quick and easy to use.

The scope of this course is to understand the applicability and
properties of methods. Programming will be exploratory: slow,
high-level but clear code is fine. We will not be writing the final
optimized code to sit on a hard-disk controller!

Resources / Acknowledgements

Communicating with noise

David). . Mackay

Recommended course text book

Information Theory, Inference,
and Learning Algorithms
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Inexpensive for a hardback textbook
(Stocked in Blackwells, Amazon currently cheaper)

Also free online:
http://www.inference.phy.cam.ac.uk/mackay/itila/

Those preferring a theorem-lemma style book could check out:
Elements of information theory, Cover and Thomas

| made use of course notes by MacKay and from CSC310 at the
University of Toronto (Radford Neal, 2004; Sam Roweis, 2006)
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Consider sending an audio signal by amplitude modulation: the
desired speaker-cone position is the height of the signal. The figure
shows an encoding of a pure tone.

A classical problem with this type of communication channel is
attenuation: the amplitude of the signal decays over time. (The
details of this in a real system could be messy.) Assuming we could
regularly boost the signal, we would also amplify any noise that has
been added to the signal. After several cycles of attenuation, noise
addition and amplification, corruption can be severe.

A variety of analogue encodings are possible, but whatever is used, no
‘boosting’ process can ever return a corrupted signal exactly to its
original form. In digital communication the sent message comes from
a discrete set. If the message is corrupted we can ‘round’ to the
nearest discrete message. It is possible, but not guaranteed, we’ll
restore the message to exactly the one sent.

Digital communication

Communication channels

The challenge

Encoding: amplitude modulation not only choice.
Can re-represent messages to improve signal-to-noise ratio

Digital encodings: signal takes on discrete values

Corrupted
’_\ l Recovered

modem — phone line — modem

Galileo — radio waves — Earth
finger tips — nerves — brain
parent cell — daughter cells

computer memory — disk drive — computer memory

Real channels are error prone

Physical solutions:
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Change the system to reduce probability of error.

Cool system, increase power, . . .




System solution

Repetition codes

Binary symmetric channel

Send more robust encodings over existing channel

message

I

encoded message

I

corrupted encoding

I

decoded message

But how is reliable communication possible at all?

Repetition code Rj:

hello there — hhheeellllllooo ttthhheeerrreee
\L (noise added)

hello thfr? < hhkgeesllllqooc m qttzhhfferrrBme

Possible results of errors:
— Corrected
— Detected
— Undetected

Binary messages: 0010100111001. ..
Each 0 or 1 is flipped with probability f=0.1
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(Figure from MacKay ITILA)

Can repetition codes give reliable communication?

Repetition code performance
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(Figure from MacKay ITILA)

Probability of error per bit ~ 0.03. What's good enough?

Consider a single 0 transmitted using R3 as 000

Eight possible messages could be received:
000 100 010 001 110 101 011 111

Majority vote decodes the first four correctly but the next four result
in errors. Fortunately the first four are more probable than the rest!

Probability of 111 is small: f2 =0.13 = 1073
Probability of two bit errors is 3f2(1 — f) = 0.03 x 0.9
Total probability of error is a bit less than 3%

How to reduce probability of error further? Repeat more! (N times)

Probability of bit error = Probability > half of bits are flipped:

N

w=3 (V)ra-pv

_N+1
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But transmit symbols N times slower! Rate is 1/N.

Repetition code performance

Binary messages: 0010100111001. ..
Each 0 or 1 is flipped with probability f=0.1

(Figure from MacKay ITILA)

2]
R5__\-8 R1
a2\ R3
@

o
&
g more useful codes

0.1
0.1 4 Riz 0.01

0.08 7 16-05

p
0.06

0.04 4 1e-10

0.02

more useful codes

R61
T T 1e-15 T T T T

T T
0 0.2 0.4 06 0.8 1 0 0.2 0.4 0.6 0.8 1
Rate Rate

pp = probability of error at each bit of message

What is achievable?

Course content

Storage capacity

Binary messages: 0010100111001. ..
Each 0 or 1 is flipped with probability f=0.1

(Figure from MacKay ITILA)
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Theoretical content
— Shannon’s noisy channel and source coding theorems
— Much of the theory is non-constructive
— However bounds are useful and approachable

Practical coding algorithms
— Reliable communication
— Compression

Tools and related material
— Probabilistic modelling and machine learning

3 decimal digits allow 10° = 1,000 numbers: 000-999

3 binary digits or bits allow 2* = 8 numbers:
000, 001, 010, 011, 100, 101, 110, 111

8 bits, a ‘byte’, can store one of 28 = 256 characters

Indexing I items requires at least
log,, I decimal digits or log, I bits

log I

Reminder: b=log, I = 2°=1 = blog2=logl = b=log2




Representing data / coding

Exploit sparseness

Run-length encoding

Example: a 10x50 binary image

o

LEE

Assume image dimensions are known

Pixels could be represented with 1s and Os

This encoding takes 500 bits (binary digits)

2500

images can be encoded. The universe is =~ 2°® picoseconds old.

As there are fewer black pixels we send just them.
Encode row + start/end column for each run in binary.

Requires (4+6+6)=16 bits per run (can you see why?)
There are 54 black runs = 54x16 = 864 bits

That's worse than the 500 bit encoding we started with!

Scan columns instead: 33 runs, (6+4+4)=14 bits each. 462 bits.

Common idea: store lengths of runs of pixels

Longest possible run = 500 pixels, need 9 bits for run length
Use 1 bit to store colour of first run (should we?)

Scanning along rows: 109 runs = 982 bits(!)
Scanning along cols: 67 runs = 604 bits

Adapting run-length encoding

Rectangles

Off-the-shelf solutions?

o
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Store number of bits actually needed for runs in a header.
444 =38 bits give sizes needed for black and white runs.

Scanning along rows: 501 bits
55 white runs up to 52 long, 55x6 = 330 bits
54 black runs up to 7 long, 54x3 = 162 bits

Scanning along cols: 249 bits
34 white runs up to 72 long, 24x7 = 168 bits

33 black runs up to 8 long, 24x3 = 72 bits (3 bits/run

(includes 8+1=9 header bits)

if no zero-length ru

ns; we did need the first-run-colour header bit!)

Exploit spatial structure: represent image as 20 rectangles

Version 1:
Each rectangle: (x1,y1, %2, y2), 4+6-+4+6 = 20 bits
Total size: 20x20 = 400 bits

Version 2:

Header for max rectangle size: 2+3 = 5 bits

Each rectangle: (z1,y1,w, h), 4+6+3+3 = 16 bits
Total size: 20x16 + 5 = 325 bits

Established image compressors:
Use PNG: 128 bytes = 1024 bits
Use GIF: 98 bytes = 784 bits
JBIG2: 108 bytes = 864 bits

DjVu: 124 bytes = 992 bits

Unfair: image is tiny, file format overhead: headers, image dims

Smallest possible GIF file is about 35 bytes. Smallest possible PNG file is about 67 bytes.
Not strictly meaningful, but: (98-35)x8 = 504 bits. (128-67)x8 = 488 bits

Store as text

“Overfitting”

o
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Assume we know the font

Encode six characters in a 64 character alphabet (say)

Total size: 6x log, 64 = 36 bits

We can compress the ‘Hi Mom' image down to 1 bit:
Represent ‘Hi Mom' image with a single ‘1’

All other files encoded with ‘0" and a naive encoding of the image.

... the actual message is one selected from a set of possible
messages. The system must be designed to operate for each
possible selection, not just the one which will actually be
chosen since this is unknown at the time of design.

— Shannon, 1948

Summary of lecture 1 (slide 1/2)

Digital communication can work reliably over a noisy channel.
We add redundancy to a message, so that we can try to infer what
corruption occurred and undo it.

Repetition codes simply repeat each message symbol N times.

A majority vote at the receiving end removes errors unless more than
half of the repetitions were corrupted. Increasing N reduces the error
rate, but the rate of the code is 1/N: transmission is slower, or more
storage space is used. For the Binary Symmetric Channel the error
probability is: Y7L 1)/ (V) F7(1 = f)N=

Amazing claim: it is possible to get arbitrarily small errors at a
fixed rate known as the capacity of the channel. Aside: codes that
approach the capacity send a more complicated message than simple
repetitions. Inferring what corruptions must have occurred (occurred
with overwhelmingly high probability) is more complex than a
majority vote. The algorithms are related to how some groups
perform inference in machine learning.




Summary of lecture 1 (slide 2/2)
First task: represent data optimally when there is no noise

Representing files as (binary) numbers:

C bits (binary digits) can index I = 2¢ objects.

logl = Clog2, C =181 forlogs of any base,

Tog2 C =logy I

In information theory textbooks “log” often means “log,”.

Experiences with the Hi Mom image:
Unless we're careful, we can expand the file dramatically.
When developing a fancy method, always consider simple baselines.

The bit encodings and header bits I used were inelegant.

We’d like more principled and better ways to proceed. (See later).
Summarizing groups of bits (rectangles, runs, etc.) can lead to fewer
objects to index. Structure in the image allows compression.
Cheating: add whole image as a “word” in our dictionary.

Schemes should work on future data that the receiver hasn’t seen.

Where now

Why is compression possible?

LEE BE

What are the fundamental limits to compression?
Can we avoid all the hackery?
Or at least make it clearer how to proceed?

This course: Shannon'’s information theory relates
compression to probabilistic modelling

A simple probabilistic model (predict from three previous neighbouring
pixels) and an arithmetic coder can compress to about 220 bits.

Try to compress all b bit files to <b bits

There are 2° possible files but only (2°—1) codewords

Theorem: if we compress some files we must expand others
(or fail to represent some files unambiguously)

Search for the comp.compression FAQ currently available at:

http://www.faqgs.org/faqs/compression-faq/

Which files to compress?

Sparse file model

We choose to compress the more probable files
Example: compress 28 x 28 binary images like this:

HHEKOH

At the expense of longer encodings for files like this:

v ——
?:

There are 278 binary images. | think < 2!%° are like the digits

Long binary vector x, mainly zeros

Assume bits drawn independently

Bernoulli distribution, a single “bent coin” flip

P if x;=1

Pz p) =
() (1-p)=po if 2;=0

How would we compress a large file for p=0.17

Idea: encode blocks of NV bits at a time

Intuitions:

‘Blocks’ of lengths N =1 give naive encoding: 1 bit / symbol
Blocks of lengths N =2 aren’t going to help
... maybe we want long blocks

For large IV, some blocks won’t appear in the file, e.g. 11111111111, ..
The receiver won’t know exactly which blocks will be used
Don’t want a header listing blocks: expensive for large N.

Instead we use our probabilistic model of the source to guide which
blocks will be useful. For N =5 the 6 most probable blocks are:

00000 00001 00010 00100 01000 10000
3 bits can encode these as 0-5 in binary: 000 001 010 011 100 101

Use spare codewords (110 111) followed by 4 more bits to encode
remaining blocks. Expected length of this code = 3 +4 P(need 4 more)
=3+4(1— (1-p)® - 5p(1—p)*) ~ 3.3 bits = 3.3/5 ~ 0.67 bits/symbol

Quick quiz

Binomial distribution

Distribution over blocks

Q1. Toss a fair coin 20 times.  (Block of N =20, p=0.5)
What's the probability of all heads?

Q2. What's the probability of “TTHTTHHTTTHTTHTHHTTT ?

Q3. What's the probability of 7 heads and 13 tails?

you'll be waiting forever A = 10710
about one in a million B ~ 1076
about one inten C ~ 107!
about a half D =~ 0.5
very probable E =~ 1—1076
don't know Z 777

How many 1's will be in our block?

Binomial distribution, the sum of N Bernoulli outcomes
N
k= anl Ln,

=k ~ Binomial(N, p)

xp, ~ Bernoulli(p)

P(k|N,p) = (Z) P )

NI

= oot

Reviewed by MacKay, pl

total number of bits:
probability of a 1:
number of 1's:

N (= 1000 in examples here)
p=P(z;=1)

k= Ez Z;

Every block is improbable!

P(x) = p*(1 —p)VF,  (at most (1—p)¥ ~ 104 for p=0.1)

How many 1's will we see?

P(k) = (N)pra—p)Nr "

004

T
Solid: p=0.1 0.02 '"‘
Dashed: p=0.5 0 o

100 500 1000
k = Number of 1’s




Intuitions: If we sample uniformly at random, the number of 1s is
distributed according to the dashed curve. That bump is where
almost all of the bit-strings of length N =1000 are.

When p=0.1, the blocks with the most zeros are the most probable.
However, there is only one block with zero ones, and not many with
only a few ones. As a result, there isn’t much probability mass on
states with only a few ones. In fact, most of the probability mass is on
blocks with around Np ones, so they are the ones we are likely to see.
The most probable block is not a typical block, and we’d be surprised
to see it!

Evaluating the numbers

k

Knee-jerk reaction: try taking logs

Explicit summation: logz! =7 ,logn

Library routines: Inz! = In['(z + 1), e.g. gammaln
Stirling’s approx: Inz! ~ xlnz — x + %ln 27w ...

Care: Stirling's series gets less accurate if you add lots terms(!),
but the relative error disappears for large = with just the terms shown.

There is also (now) a convergent version (see Wikipedia)

See also: more specialist routines. Matlab/Octave: binopdf, nchoosek

N N!
( ) = m what happens for N =1000, k=5007

(or N=10,000, k=5,000)
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Philosophical Transactions (1683-1775) Vol. 53, (1763), pp. 269-271.
The Royal Society. http://www.jstor.org/stable/105732

XLIIL A Letter from the late Reverend Mr.
Thomas Bayes, F.R.S. 7o John Canton,
M. A. and F.R. S.

SIR,

Read Nov. 24, T F the following obfervations do not

1763- feem to you to be too minute, I thould
efteem it as a favour, if you would pleafe to commu-
nicate them to the Royal Society.

It has been afferted by fome eminent mathemati-
cians, that the fum of the logarithms of the num-
bers 1.2. 3. 4. &c. to 2, is equal to1 log. c+zj-—;.x
lo%. z leﬁ':ned by the. feries = -—-l—;—z~+ .37";7;’;4.
T T A &ec. if ¢ denote the circumference of
a circle whofe radius is unity. And it is true that this
expreflion will very nearly approach to the value of
that fum when =z is large, and you take in only a
proper number of the firft terms of the foregoing
feries: but the whole feries can never properly ex-=
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Familiarity with extreme numbers: when counting sets of
possible strings or images the numbers are enormous. Similarly the
probabilities of any such objects must be tiny, if the probabilities are
to sum to one.

Learn to guess: before computing a number, force yourself to guess
a rough range of where it will be. Guessing improves intuition and
might catch errors.

Numerical experiments: we will derive the asymptotic behaviour
of large block codes. Seeing how finite-sized blocks behave empirically
is also useful. Take the logs of extreme positive numbers when
implementing code.

Bayes and Stirling’s series: approximations of functions can be
useful for analytically work. The images show copies of Bayes’s letter
about Stirling’s series to John Canton, both handwritten and the
original typeset version. Bayes studied at what became the University
of Edinburgh. I've included a copy of a class list with his name
(possibly not his signature) second from the end.

Compression for N-bit blocks

Can we do better?

Can we do better?

Strategy:
— Encode N-bit blocks with <t ones with C/(t) bits.
— Use remaining codewords followed by Cy(t) bits
for other blocks.

Set C'1(t) and C(t) to minimum values required.

Set ¢ to minimize average length: Cy(t) + P(t<>"_ @) Calt)
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Block size, N

We took a simple, greedy strategy:
Assume one code-length C1, add another Cy bits if that doesn’t work.

First observation for large N:

The first C bits index almost every block we will see.
1

P(use extra 02 bits)
o
[6)]

o
©

10° 10" 10°
Block size, N

[N
o

With high probability we can compress a large-N block into

a fixed number of bits. Empirically ~ 0.47 N for p=0.1.

We took a simple, greedy strategy:
Assume one code-length C4, add another Cy bits if that doesn't work.

Second observation for large N:

Trying to use <} bits means we always use more bits

At N =10, trying to use 0.95 the optimal C initial bits
= P(need more bits) ~ 1 — 1071

It is very unlikely a file can be compressed into fewer bits.




Summary of lecture 2 (slide 1/2)
If some files are shrunk others must grow:

# files length b bits = 2°
# files <bbits = Y07 20 = 14244+ 8+ 42071 =201

(We'll see that things are even worse for encoding blocks in a stream.
Consider using bit strings up to length 2 to index symbols:

A=0, B=1, C=00, D=01, E=11
If you receive 111, what was sent? BBB, BE, EB?)
‘We temporarily focus on sparse binary files:
Encode blocks of N bits, x =00010000001000. . .000
Assume model: P(x) = p* (1 —p)N=F, where k =Y, z; =“# 1's”

Key idea: give short encoding to most probable blocks:

Most probable block has k=0. Next N most probable blocks have k=1
Let’s encode all blocks with k<t, for some threshold ¢.

This set has I} = ZZ:O (ZZ) items. Can index with C = [log, I1] bits.

Summary of lecture 2 (slide 2/2)

Can make a lossless compression scheme:
Actually transmit Cy = [logy(Iy + 1)] bits
Spare code word(s) are used to signal Cy more bits should be read,
where Co < N can index the other blocks with k>t.
Expected/average code length = Cy + P(k > t) Cs
Empirical results for large block-lengths N

— The best codes (best ¢, Cy, C2) had code length ~ 0.47N

these had tiny P(k > t); it doesn’t matter how we encode k>t
— Setting C7 = 0.95 x 0.47N made P(k > t) ~ 1

~0.47N bits are sufficient and necessary to encode long blocks
(with our model, p=0.1) almost all the time and on average

No scheme can compress binary variables with p=0.1 into less than
0.47 bits on average, or we could contradict the above result.

Other schemes will be more practical (they’d better be!) and will be
closer to the 0.47N limit for small N.




