
Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 9
Hashes and lossy memories

Iain Murray, 2010

School of Informatics, University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/it/


Course overview

Source coding / compression:
— Losslessly representing information compactly

— Good probabilistic models → better compression

Noisy channel coding / error correcting codes:
— Add redundancy to transmit without error

— Large psuedo-random blocks approach theory limits

— Decoding requires large-scale inference (cf Machine learning)

Other topics in information theory
— Cryptography: not covered here

— Over capacity: using fewer bits than info. content

— Rate distortion theory

— Hashing



Rate distortion theory (taster)

Q. How do we store N bits of information with N/3 binary

symbols (or N uses of a channel with C = 1/3)?

A. We can’t without a non-negligible probability of error.

But what if we were forced to try?

Idea 1:
— Drop 2N/3 bits on the floor

— Transmit N/3 reliably

— Let the receiver guess the remaining bits

Expected number of errors: 2N/3 · 1/2 = N/3

Can we do better?



Reversing a block code

Swap roles of encoder and decoder for [N,K] block code

E.g., Repetition code R3

Put message through decoder first, transmit, then encode

110111010001000 → 11000 → 111111000000000

111 and 000 sent without error. Other six blocks lead to

one error. Error rate = 6/8 · 1/3 = 1/4, which is < 1/3

Slightly more on MacKay p167-8, much more in Cover and Thomas.

Rate distortion theory plays little role in practical lossy compression

systems for (e.g.) images. It’s a challenge to find practical coding

schemes that respect perceptual measures of distortion.



Hashing

Hashes reduce large amounts of data into small values

(obviously the info. content of a source is not preserved in general)

Computers, humans and other animals can do amazing

things, very quickly, based on tiny amounts of information.

Understanding how to use hashes can make progress in

cognitive science and practical information systems.

Some of this is long-established computer science

A surprising amount is fertile research ground



Hashing motivational examples:

Many animals can do amazing things. While:

http://www.google.com/technology/pigeonrank.html was a hoax.

The paper on the next slide and others like it are not.

It isn’t just pigeons. Amazingly humans can do this stuff too. Paul

Speller demonstrated that humans can remember to distinguish

similar pictures of pigeons over many minutes(!). http://www.

webarchive.org.uk/wayback/archive/20100223122414/http:

//www.oneandother.co.uk/participants/PaulSpeller

How can we build systems that rapidly recall arbitrary labels attached

to large numbers of rich but noisy media sources? YouTube has

recently done this on a very large scale for copyright enforcement.

Some web browsers rapidly prove that a website isn’t on a malware

black-list without needing to access an external server, or needing an

explicit list of all black-listed sites. (False positives can be checked

with a request to an external server.)

http://www.google.com/technology/pigeonrank.html
http://www.webarchive.org.uk/wayback/archive/20100223122414/http://www.oneandother.co.uk/participants/PaulSpeller
http://www.webarchive.org.uk/wayback/archive/20100223122414/http://www.oneandother.co.uk/participants/PaulSpeller
http://www.webarchive.org.uk/wayback/archive/20100223122414/http://www.oneandother.co.uk/participants/PaulSpeller




Remembering images



Remembering images



‘Safe browsing’



Information retrieval

Wheel of Fortune, Nov 2010



Information retrieval



Information retrieval



Hash functions

A common view:

file → b bit string (maybe like random bits)

hash
functionkeys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

hashes

00

01

02

03

04

05

:

15

Many uses: e.g., integrity checking, security,

communication with feedback (rsync), indexing for

information retrieval



Hash Tables
hash

functionkeys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

hashes

00

01

02

03

04

05

:

15

Hash indexes table of pointers

to data

When hash table is empty at

index, can immediately return

‘Not found’

Need to resolve conflicts. Ways include:

— List of data at each location. Check each item in list.

— Put pointer to data in next available location.

Deletions need ‘tombstones’, rehash when table is full

— ‘Cuckoo hashing’: use > 1 hash and recursively move

pointers out of the way to alternative locations.



Bloom Filters

Hash files multiple times (e.g., 3)

Set (or leave) bits equal to 1 at hash locations

0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0

{x, y, z}

w

Immediately know haven’t seen w: ≥ 1 bits are zero



Notes on Bloom filters

Probability of false negative is zero

Probability of false positive depends on number of memory bits, M ,

and number of hash functions, K.

For fixed large M the optimal K (ignoring computation cost) turns

out to be the one that sets ≈ 1/2 of the bits to be on. This makes

sense: the memory is less informative if sparse.

Other things we’ve learned are useful too. One way to get a low false

positive rate is to make K small but M huge. This would have a huge

memory cost. . . except we could compress the sparse bit-vector. This

can potentially perform better than a standard Bloom filter (but the

details will be more complicated).

Google Chrome uses (or at least used to use) a Bloom filter with

K=4 for its safe web-browsing feature.



Hashing in Machine Learning

A couple of example research papers

Semantic Hashing (Salakhutdinov & Hinton, 2009)

— Hash bits are “latent variables” underlying data

— ‘Semantically’ close files → close hashes

— Very fast retrieval of ‘related’ objects

Feature Hashing for Large Scale Multitask Learning,

(Weinberger et al., 2009)

— ‘Hash’ large feature vectors without (much) loss in

(spam) classification performance.

— Exploit multiple hash functions to give millions of

users personalized spam filters at only about twice the

cost (time and storage) of a single global filter(!).


