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Typical sets revisited

Week 2: looked at k =
∑

i xi, xi ∼ Bernoulli(f)

Saw number of 1’s is almost always in narrow range around

expected number. Indexing this ‘typical set’ was the cost of

compression.

Typical sets: general alphabets

More generally look at Ĥ = 1
N

∑
i log 1

P (xi)
, xi ∼ P

Define typical set: x ∈ TN,β if
∣∣∣ 1
N log 1

P (x) −H(X)
∣∣∣ < β

For any β, P (x ∈ TN,β) > 1−δ, for any δ if N big enough

See MacKay, Ch. 4

Source Coding Theorem

(MacKay, p82–3 for details)

Almost all strings have prob. less than 2−N(H(X)−β)

Therefore typical set has size ≤ 2N(H(X)+β)

For large N can set β small

Index almost all strings with log2 2NH(X) = NH(X) bits

We now extend ideas of typical sets to joint ensembles of

inputs and outputs of noisy channels. . .

Jointly typical sequences

For n = 1 . . . N : xn ∼ pX

Send x over extended channel: yn ∼ Q·|xn

Jointly typical:

(x,y) ∈ JN,β if
∣∣∣ 1
N log 1

P (x,y) −H(X,Y )
∣∣∣ < β

There are ≤ 2N(H(X,Y )+β) jointly typical sequences

Chance of being jointly typical

(x,y) from channel are jointly typical with prob 1−δ
(x′,y′) generated independently are rarely jointly typical

P (x′,y′ ∈ JN,β) =
∑

(x,y)∈JN,β

P (x)P (y)

≤ |JN,β| 2−N(H(X)−β) 2−N(H(Y )−β)

≤ 2N(H(X,Y )−H(X)−H(Y )+3β)

≤ 2−N(I(X;Y )−3β)

≤ 2−N(C−3β), for optimal pX

Random typical set code

Randomly choose S = 2NR
′

codewords {x(s)}
Decode y→ ŝ if (y,x(ŝ)) ∈ JN,β
and no other (y,x(s′)) ∈ JN,β

Error rate averaged over codes

Set rate R′ < C−3β. For large N prob. confusion < δ

Total error probability on average < 2δ

Error for a particular code

We randomly drew all the codewords for each symbol sent.

Block error rate averaged over all codes:

〈pB〉 ≡
∑

C
P (ŝ 6= s | C)P (C) < 2δ

Some codes will have error rates more/less than this

There exists a code with block error:

pB(C) ≡ P (ŝ 6= s | C) < 2δ



Worse case codewords

Maximal block error: pBM(C) ≡ maxsP (ŝ 6= s | s, C)
could be close to 1.

pBM < 4δ for expurgated code.

Now have 2NR
′−1 codewords, rate = R′ − 1/N .

Noisy channel coding theorem

For N large enough, can shrink β’s and δ’s close to zero.

For large N a code exists with rate close to C with error

close to zero. (As close as you like for large enough N .)

In week 7 we showed that it is impossible to transmit at

rates greater than the capacity without non-negligible

probability of error for particular channels. This is also true

in general.

Code distance

Distance, d ≡ mins,s′
∣∣x(s) − x(s′)

∣∣

E.g., d=3 for the [7, 4] Hamming code

Can always correct b(d− 1)/2c errors

Distance of random codes?
∣∣x(s) − x(s′)

∣∣ ≈ N
2 for large N

Not guaranteed to correct errors in ≥ N
4 bits

With BSC get ≈ Nf errors, and proof works for f > 1
4

Distance isn’t everything

Distance can sometimes be a useful measure of a code

However, good codes have codewords that aren’t separated

by twice the number of errors we want to correct

In high-dimensions the overlapping volume is tiny.

Shannon-limit approaching codes for the BSC correct

almost all patterns with Nf errors, even though they can’t

strictly correct all such patterns.

Low Density Parity Check codes

LDPC codes originally discovered by Gallagher (1961)

Sparse graph codes like LDPC not used until 1990s.

Prior over codewords P (t) ∝ I(Ht=0)

Posterior over codewords P (t | r) ∝ P (t)Q(r | t)

Why Low Density Parity Check (LDPC) codes?

The noisy channel coding theorem can be reproved for randomly

generated linear codes. However, not all ways of generating

low-density codes, with each variable only involved in a few parity

checks and vice-versa, are very good.

For some sequences of low-density codes, the Shannon limit is

approached for large block-lengths.

For both uniformly random linear codes, or random LDPC codes, the

results are for optimal decoding: t̂ = argmaxtP (t | r). This is a hard

combinatorial optimization problem in general. The reason to use

low-density codes is that we have good approximate solvers: use the

sum-product algorithm (AKA “loopy belief propagation”) — decode if

the thresholded beliefs give a setting of t that satisfies all parity

checks.

Sum-Product algorithm

Example with three received bits and one parity check

p336 MacKay, p399 Bishop “Pattern recognition and machine learning”

Sum-Product algorithm notes:

Beliefs are combined by element-wise multiplying

Two types of messages: variable→ factor and factor→ variable

Messages combine beliefs from all neighbours except recipient

Variable→ factor:

qn→m(xn) =
∏

m′∈M(n)\m
rm′→n(xn)

Factor→ variable:

rm→n(xn) =
∑

xm\n

(
fm(xm)

∏

n′∈N (m)\n
qn′→m(xn′)

)

Example rp→a in diagram, with sum over (b, c) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
rp→a(0) = 1×0.1×0.1 + 0 + 0 + 1×0.9×0.9 = 0.82

rp→a(1) = 0 + 1×0.1×0.9 + 1×0.9×0.1 + 0 = 0.18

More Sum-Product algorithm notes:

Messages can be renormalized, e.g. to sum to 1, at any time.

I did this for the outgoing message from a to an imaginary factor

downstream. This message gives the relative beliefs about about the

settings of a given the graph we can see:

bn(xn) =
∏

m′∈M(n)

rm′→n(xn)

The settings with maximum belief are taken and, if they satisfy the

parity checks, used as the decoded codeword.

The beliefs are the correct posterior marginals if the factor graph is a

tree. Empirically the decoding algorithm works well on low-density

graphs that aren’t trees. Loopy belief propagation is also sometimes

used in computer vision and machine learning, however, it will not

give accurate or useful answers on all inference/optimization problems!

We haven’t covered efficient implementation which uses Fourier

transform tricks to compute the sum quickly.


