
Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 7
Noisy channel coding

Iain Murray, 2010

School of Informatics, University of Edinburgh

ISBNs — checksum example

On the back of Bishop’s Pattern Recognition book:

ISBN: 0-387-31073-8

Group-Publisher-Title-Check

The check digit: x10 = x1 + 2x2 + 3x3 + · · ·+ 9x9 mod 11

Matlab/Octave: mod((1:9)*[0 3 8 7 3 1 0 7 3]’, 11)

Questions:
— Why is the check digit there?

—
∑9

i=1 xi mod 10 would detect any single-digit error.

— Why is each digit pre-multiplied by i?

— Why do mod 11, which means we sometimes need X?

Some people often type in ISBNs. It’s good to tell them of mistakes

without needing a database lookup to an archive of all books.

Not only are all single-digit errors detected, but also transposition of

two adjacent digits.

The back of the MacKay textbook cannot be checked using the given

formula. In recent years books started to get 13-digit ISBN’s. These

have a different check-sum, performed modulo-10, which doesn’t

provide the same level of protection.

Check digits are such a good idea, they’re found on many long

numbers that people have to type in, or are unreliable to read:

— Product codes (UPC, EAN, . . .)

— Government issued IDs for Tax, Health, etc., the world over.

— Standard magnetic swipe cards.

— Airline tickets.

— Postal barcodes.

Noisy typewriter

See the fictitious noisy typewriter model, MacKay p148

For Uniform input distribution: pX = [1/27, 1/27, . . . 1/27]>

H(X) = log(27)

p(x | y=B) =


1/3 x = A

1/3 x = B

1/3 x = C

0 otherwise.

⇒ H(X | y=B) = log 3

H(X |Y) = Ep(y)[H(X | y)] = log 3

I(X;Y) = H(X)−H(X |Y) = log 27/3 = log2 9 bits

Noisy Typewriter Capacity:

In fact, the capacity: C = maxpX
I(X;Y) = log2 9 bits

Under the uniform input distribution the receiver infers 9 bits of

information about the input. And Shannon’s theory will tell us that

this is the fastest rate that we can communicate information without

error.

For this channel there is a simple way of achieving error-less

communication at this rate: only use 9 of the inputs as on the next

slide (along with the Q matrix for the channel). Confirm that the

mutual information for this input distribution is also log2 9 bits.

Non-confusable inputs

-Z -ZY���1PPPq... -���1PPPq-���1PPPq-���1PPPq
IH HGFE EDCB BA

-
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

-Z -ZY���1PPPq... -���1PPPq-���1PPPq-���1PPPq
IH HGFE EDCB BA

-
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

MacKay, p153

The challenge

Most channels aren’t as easy-to-use as the typewriter.

How to communicate without error with messier channels?

Idea: use N th extension of channel:

Treat N uses as one use of channel with

Input ∈ ANX
Output ∈ ANY

For large N a subset of inputs can be non-confusable with

high-probability.

Extensions of the BSC

(f = 0.15)

1

0

0 1

11

01

10

00

0
0

1
0

0
1

1
1

1111

0111

1011

0011

1101

0101

1001

0001

1110

0110

1010

0010

1100

0100

1000

0000

0
0
0
0

1
0
0
0

0
1
0
0

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

N = 1 N = 2 N = 4 MacKay, p153

Extensions of the Z channel

(f = 0.15)

1

0

0 1

11

01

10

00

0
0

1
0

0
1

1
1

1111

0111

1011

0011

1101

0101

1001

0001

1110

0110

1010

0010

1100

0100

1000

0000

0
0
0
0

1
0
0
0

0
1
0
0

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

N = 1 N = 2 N = 4 MacKay, p154

Non-confusable typical setsANY '
&

$
%

Typi
al y�� ����������������������������������
����������
��������
�������������������� ��6Typi
al y for a given typi
al x

ANY '
&

$
%

Typi
al y
��

(a) (b)
MacKay, p155

Do the 4th extensions look like the noisy typewriter?

I think they look like a mess! For the BSC the least confusable inputs

are 0000 and 1111 – a simple repetition code. For the Z-channel one

might use more inputs if one has a moderate tolerance to error.

(Might guess this: the Z-channel has higher capacity.)

To get really non-confusable inputs need to extend to larger N . Large

blocks are hard to visualize. The cartoon on the previous slide is part

of how the noisy channel theorem is proved.

We know from source-coding that only some large blocks under a

given distribution are “typical”. For a given input, only certain

outputs are typical (e.g., all the blocks that are within a few bit-flips

from the input). If we select only a tiny subset of inputs, codewords,

whose typical output sets only weakly overlap. Using these nearly

non-confusable inputs will be like using the noisy typewriter.

That will be the idea. But as with compression, dealing with large

blocks can be impractical. So first we’re going to look at some simple,

practical error correcting codes.

[7,4] Hamming Codes

Sends K=4 source bits

With N=7 uses of the channel

Can detect and correct any single-bit error in block.

My explanation in the lecture and on the board followed

that in the MacKay book, p8, quite closely.

You should understand how this block code works.

To think about: how can we make a code (other than a

repetition code) that can correct more than one error?

[N,K] Block codes

[7,4] Hamming code was an example of a block code

We use S = 2K codewords (hopefully hard-to-confuse)

Rate: # bits sent per channel use:

R =
log2S

N
=
K

N

Example, repetition code R3:

N=3, S=2 codewords: 000 and 111. R = 1/3.

Example, [7, 4] Hamming code: R = 4/7.

Some texts (not MacKay) use (log|AX| S)/N , the relative rate

compared to a uniform distribution on the non-extended channel.

I don’t use this definition.

Noisy channel coding theorem

Consider a channel with capacity C = maxpX
I(X;Y)

[E.g.’s, Tutorial 5: BSC, C = 1−H2(f); BEC C = 1−f]

No feed back channel

For any desired error probability ε > 0, e.g. 10−15, 10−30. . .

For any rate R < C

1) There is a block code (N might be big) with error < ε

and rate K/N ≥ R.

2) We cannot transmit without error at rates > C.

Capacity as an upper limit

It is easy to see that errorless transmission above capacity is

impossible for the BSC and the BEC. It would imply we can compress

any file to less than its information content.

BSC: Take a message with information content K +NH2(f) bits.

Take the first K bits and create a block of length N using an error

correction code for the BSC. Encode the remaining bits into N binary

symbols with probability of a one being f . Add together the two

blocks modulo 2. If the error correcting code can identify the

‘message’ and ‘noise’ bits, we have compressed K +NH2(f) bits into

N binary symbols. Therefore, N > K+NH2(f) ⇒ K/N < 1−H2(f).

That is, R < C for errorless communication.

BEC: we typically receive N(1−f) bits, the others having been

erased. If the block of N bits contained a message of K bits, and is

recoverable, then K < N(1−f), or we have compressed the message to

less than K bits. Therefore K/N < (1−f), or R < C.

Linear [N,K] codes

Hamming code example of linear code: t = G>s mod 2

Transmitted vector takes on one of 2K codewords

Codewords satisfy M=N−K constraints: Ht = 0 mod 2

Dimensions:

t N × 1

G> N ×K
s K × 1

H M ×N

For the BEC, choosing constraints H at random makes

communication approach capacity for large N !

Required constraints

There are E ≈ Nf erasures in a block

Need E independent constraints to fill in erasures

H matrix provides M=N−K constraints.

But they won’t all be independent.

Example: two Hamming code parity checks are:

t1 + t2 + t3 + t5 = 0 and t2 + t3 + t4 + t6 = 0

We could specify ‘another’ constraint:

t1 + t4 + t5 + t6 = 0

But this is the sum (mod 2) of the first two, and provides

no extra checking.

H constraints

Q. Why would we choose H with redundant rows?

A. We don’t know ahead of time which bits will be erased. Only at

decoding time to we set up the M equations in the E unknowns.

For H filled with {0, 1} uniformly at random, we expect to

get E independent constraints with only M = E+2 rows.

Recall E ≈ Nf . For large N , if f < M/N there will be

enough constraints with high probability.

Errorless communication possible if

f < (N−K)/N = 1−R or if R < 1−f , i.e., R < C.

A large random linear code achieves capacity.

Details on finding independent constraints:

Imagine that while checking parity conditions, a row of H at a time,

you have seen n independent constraints so far.

P (Next row of H useful) = 1− 2n/2E = 1− 2n−E

There are 2E possible equations in the unknowns, but 2n of those are

combinations of the n constraints we’ve already seen.

Expect number of wasted rows before we see E constraints:

E−1∑
n=0

(
1

1− 2n−E
− 1

)
=

E−1∑
n=0

1

2E−n − 1
= 1 + 1/3 + 1/7 + . . .

< 1 + 1/2 + 1/4 + · · · < 2

(The sum is actually about 1.6)

Packet erasure channel

Split a video file into K = 10, 000 packets and transmit

Some might be lost (dropped by switch, fail checksum, . . .)

Assume receiver knows the identity of received packets:

— Transmission and reception could be synchronized

— Or large packets could have unique ID in header

If packets are 1 bit, this is the BEC.

Digital fountain methods provide cheap, easy-to-implement

codes for erasure channels. They are rateless: no need to

specify M , just keep getting packets. When slightly more

than K have been received, the file can be decoded.

Digital fountain (LT) code

Packets are sprayed out continuously

Receiver grabs any K ′ > K of them (e.g., K ′ ≈ 1.05K)

Receiver knows packet IDs n, and encoding rule

Encoding packet n:

Sample dn psuedo-randomly from a degree distribution µ(d)

Pick dn psuedo-random source packets

Bitwise add them mod 2 and transmit result.

Decoding:

1. Find a check packet with dn = 1

Use that to set corresponding source packet

Subtract known packet from all checks

Degrees of some check packets reduce by 1. GoTo 1.

LT code decoding

s1

0 11

1 01

1 11

1

1

0

1 1

1 1

01

1

c)

d)

e)

f)

a)

b)

01

01

s2 s3

s1

0 11

1 01

1 11

1

1

0

1 1

1 1

01

1

c)

d)

e)

f)

a)

b)

01

01

s2 s3

s1

0 11

1 01

1 11

1

1

0

1 1

1 1

01

1

c)

d)

e)

f)

a)

b)

01

01

s2 s3

s1

0 11

1 01

1 11

1

1

0

1 1

1 1

01

1

c)

d)

e)

f)

a)

b)

01

01

s2 s3

s1

0 11

1 01

1 11

1

1

0

1 1

1 1

01

1

c)

d)

e)

f)

a)

b)

01

01

s2 s3

s1

0 11

1 01

1 11

1

1

0

1 1

1 1

01

1

c)

d)

e)

f)

a)

b)

01

01

s2 s3

Soliton degree distribution

Ideal wave of decoding always has one d=1 node to remove

“Ideal soliton” does this in expectation:

ρ(d) =

{
1/K d = 1

1/d(d−1) d = 2, 3, . . . ,K

(Ex. 50.2 explains how to show this.)

A robustified version, µ(d), ensures decoding doesn’t stop

and all packets get connected. Still get R→ C for large K.

A Soliton wave was first observed in 19 C Scotland on the Union Canal.

Number of packets to catch

10000 10500 11000 11500 12000

10000 10500 11000 11500 12000

10000 10500 11000 11500 12000

K=10, 000 source packets

Numbers of transmitted

packets required for

decoding on random

trials for three different

packet distributions.

MacKay, p593

Reed–Solomon codes (sketch mention)

Widely used: e.g. CDs, DVDs, Digital TV

k message symbols → coefficients of degree k−1 polynomial

Evaluate polynomial at > k points and send

Some points can be erased:

Can recover polynomial with any k points.

To make workable, polynomials are defined on Galois fields.

Reed–Solomon codes can be used to correct bit-flips as well as erasures:

like identifying outliers when doing regression.

