Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 4
Compressing streams

lain Murray, 2010

School of Informatics, University of Edinburgh

Proving Gibbs’ inequality

Huffman code worst case

Idea: use Jensen's inequality

For the idea to work, the proof must look like this:

Dia(plla) = 3 pilog’’ = ELf(w)] > / (Elu))

Define u; = L, with p(u;) = p;, giving E[u] = 1

Identify f(z) =logl/s = —logx, a convex function

Substituting gives: | Dkr(p || ¢) > 0

Previously saw: simple simple code ¢; = [log 1/p;]

Always compresses with E[length] < H(X)+1

Huffman code can be this bad too:
For Px={l1—¢,e}, H(x) =0 as e —~0
Encoding symbols independently means E[length] = 1.

Relative encoding length: E[length]/H(X) — oo (!)

Question: can we fix the problem by encoding blocks?
H(X) is log(effective number of choices)
With many typical symbols the “+1" looks small

Reminder on Relative Entropy and symbol codes:

The Relative Entropy (AKA Kullback-Leibler or KL divergence) gives
the expected extra number of bits per symbol needed to encode a
source when a complete symbol code uses implicit probabilities

¢; = 2% instead of the true probabilities p;.

‘We have been assuming symbols are generated i.i.d. with
known probabilities p;.

Where would we get the probabilities p; from if, say, we were
compressing text? A simple idea is to read in a large text file and
record the empirical fraction of times each character is used. Using
these probabilities the next slide (from MacKay’s book) gives a
Huffman code for English text.

The Huffman code uses 4.15 bits/symbol, whereas H(X) = 4.11 bits.
Encoding blocks might close the narrow gap.

More importantly English characters are not drawn
independently encoding blocks could be a better model.

a pi logy - I c(ai)

a 0.0575 4.1 4 0000

b 0.0128 63 6 001000

c 0.0263 5.2 5 00101

a 00285 51 5 10000

e 0.0913 35 4 1100

£ 00173 59 6 111000

g 00133 62 6 001001

h 0.0313 50 5 10001

i 0.0599 41 4 1001

j 00006 10.7 10 1101000000
k 0.0084 69 7 1010000
100335 19 5 11101

m 00235 54 6 110101

o 0.0596 41 4 0001

o 0.0689 39 4 1011

p 00192 57 6 111001

q 00008 103 9 110100001
T 0.0508 13 5 11011

s 0.0567 41 4 0011

t 0.0706 38 4 1111

u o 0.0334 149 5 10101

v 0.0069 72 8 11010001
w 00119 64 7 1101001
X 0.0073 71 7 1010001

y 0.0164 59 6 101001

z 0.0007 10.4 10 1101000001
- 0192 24 2 o1

(Mackay, p100)

Bigram statistics

Previous slide: Ax = {a—z,_}, H(X)=4.11 bits

Question: | decide to encode bigrams of English text:

Axr = {aa,ab,...,az,a_,...,__}
What is H(X') for this new ensemble?

A ~ 2 bits

B ~ 4 bits
C ~ 7 bits
D ~ 8 bits
E ~ 16 bits
z

?

Answering the previous vague question
We didn’t completely define the ensemble: what are the probabilities?

‘We could draw characters independently using p;’s found before.
Then a bigram is just two draws from X, often written X2.
H(X?) =2H(X) = 4.22 bits

We could draw pairs of adjacent characters from English text.

When predicting such a pair, how many effective choices do we have?
More than when we had Ax = {a-z, _}: we have to pick the first
character and another character. But the second choice is easier.

We expect H(X) < H(X') < 2H(X). Maybe 7 bits?

Looking at a large text file the actual answer is about 7.6 bits.

This is ~ 3.8 bits/character — better compression than before.

Shannon (1948) estimated about 2 bits/character for English text.
Shannon (1951) estimated about 1 bits/character for English text
Compression performance results from the quality of a probabilistic
model and the compressor that uses it.

Human predictions

Predictions

Ask people to guess letters in a newspaper headline:

k-i-d's._make_nutritious_snacks
14-2-1-1-4-2.41-1-455-1-2.1-1-1-1-2.1-1-56-7-1-1-1-1

Numbers show # guess required by 2010 class
= “effective number of choices” or entropy varies hugely

We need to be able to use a different probability
distribution for every context

Sometimes many letters in a row can be predicted at
minimal cost: need to be able to use < 1 bit/character.

(MacKay Chapter 6 describes how numbers like those above could be
used to encode strings.)

Google

. Advaneed Search
nutritious s Language Toals

nutritious snacks

nutritious soups

nutritious soup recipes
nutritious smoothies
nutritious salads

nutritious snacks for children
nutritious synonym m
nutritious school lunches
nutritious salad recipes
nutritious soft foods

z

Google Search I'm Feeling Lucky

Cliché Predictions

A more boring prediction game

Arithmetic Coding

Google

kids make n
kids make nutritious snacks

Advanced Search
Language Tools

Google Search | I'm Feeling Lucky

Advertising Programmes Business Solutions About Google Go to Google.com

© 2010 Privacy

“I have a binary string with bits that were drawn i.i.d..
Predict away!”

What fraction of people, f, guess next bit is ‘1’7

Bit: 1 1 1 1 1 1 1 1

The source was genuinely i.i.d.: each bit was independent of
past bits.

We, not knowing the underlying flip probability, learn from
experience. Our predictions depend on the past. So should
our compression systems.

For better diagrams and more detail, sce MacKay Ch. 6

Consider all possible strings in alphabetical order
(If infinities scare you, all strings up to some maximum length)
Example: Ax = {a,b,c, e~}

Where ‘e~ is a special End-of-File marker.

Cm

aew~, aaew, abew, ace~,

bew, baew, bbew, , bcew

cew caew, cbew ccew CCCCCC. .. CCew

Arithmetic Coding

Arithmetic Coding

Arithmetic Coding

We give all the strings a binary codeword
Huffman merged leaves — but we have too many to do that

Create a tree of strings ‘top-down’:

Hoges
B Jj ‘;(x,.-ai)

:[plxa=ar | % =a) p(xi=a;)
l p(reas [wi=a) p(1=a:)=ples)
T ptaazans; [x,:a;) plxi=a;)

In gl Al ke plxazaq | wen) o b pared
By ectin bigh (5) = pGo) T2 plotc| i) = L)

Could keep splitting into really short blocks of height P(string)

Overlay string tree on binary symbol code tree

bac®

From P(xz1) distribution can’t begin to encode ‘b’ yet
Look at P(x3|x1=Db) can't start encoding 'ba’ either

Look at P(x3|ba). Message for ‘bac’ begins 1000

Diagram: zoom in. Code: rescale to avoid underflow

bac®
’ babecec...ccc B

loodorolo!

heigt 27
ket plbac)
(< boyp + LHb

From P(z4|bac). Message ‘bacX’ encoded by 1000010101
Encoding lies only within message: uniquely decodable

1000010100 would also work: slight inefficiency

Some comments on arithmetic coding

Tutorial homework: prove encoding length < log% + 2 bits

An excess of 2 bits on the whole file (millions or more bits?)
Arithmetic coding compresses very close to the information content
given by the probabilistic model used by both the sender and receiver.

The conditional probabilities P(x;|X;<;) can change for each symbol.
Arbitrary adaptive models can be used (if you have one).

Large blocks of symbols are compressed together: possibly your whole
file. The inefficiencies of symbol codes have been removed.

Huffman coding blocks of symbols requires an exponential number of
codewords. In arithmetic coding, each character is predicted one at a
time, as in a guessing game. The model and arithmetic coder just
consider those |Ax| options at a time. None of the code needs to
enumerate huge numbers of potential strings. (De)coding costs should
be linear in the message length.

AC and sparse files

Non-binary encoding

Finally we have a practical coding algorithm for sparse files

(You could make a better picture!)
The initial code-bit 0, encodes many initial message O's.

Notice how the first binary code bits will locate the first 1.
Something like run-length encoding has dropped out.

Can overlay string on any other indexing of [0,1] line

R

'(‘74,);(2

1

Now know how to compress into «, /3 and v

Dasher

Dasher is an information-efficient text-entry interface.
Use the same string tree. Gestures specify which one we want.

this_is_a_demo

http://www.inference.phy.cam.ac.uk/dasher/

