
Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 3
Symbol codes

Iain Murray, 2010

School of Informatics, University of Edinburgh

(Binary) Symbol Codes

For strings of symbols from alphabet e.g.,

xi ∈ AX = {A,C,G, T}

Binary codeword assigned to each symbol

CGTAGATTACAGG

↓
10111110011101101100100111111

A 0

C 10

G 111

T 110

Codewords are concatentated without punctuation

Uniquely decodable

We’d like to make all codewords short

But some codes are not uniquely decodable

CGTAGATTACAGG

↓
111111001110110110010111111

↓
CGTAGATTACAGG

CCCCCCAACCCACCACCAACACCCCCC

CCGCAACCCATCCAACAGCCC

GGAAGATTACAGG

???

A 0

C 1

G 111

T 110

Instantaneous/Prefix Codes

Attach symbols to leaves of a binary tree

Codeword gives path to get to leaf

1

0

0

1

1 =A

00 =D

011 =B

010 =C

1

0

“Prefix code” because

no codeword is a prefix

of another

Decoding: follow tree while reading stream until hit leaf

Symbol is instantly identified. Return to root of tree.

Non-instantaneous Codes

The last code was instantaneously decodable:

We knew as soon as we’d finished receiving a symbol

101100000101100

↓ A 1

B 10

C 000

D 100

This code is uniquely decodable,

but not instantaneous or pleasant!

Expected length/symbol, L̄

Code lengths: {`i} = {`1, `2, . . . , `I}

Average, L̄ =
∑

i

pi `i

Compare to Entropy:

H(X) =
∑

i

pi log
1

pi

If `i=log 1
pi

or pi=2−`i we compress to the entropy

An optimal symbol code

An example code with:

L̄ =
∑

i

pi `i = H(X) =
∑

i

pi log
1

pi

x p(x) codeword

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111

Limit on code lengths

Imagine coding under an implicit distribution:

qi =
1

Z
2−`i, Z =

∑

i

2−`i.

H =
∑

i

qi log
1

qi
=
∑

i

qi (`i + logZ) = L̄+ logZ

⇒ logZ≤0, Z≤1

Kraft–McMillan Inequality
∑

i

2−`i ≤ 1 (if uniquely-decodable)

Proof without invoking entropy bound: p95 of MacKay, or p116 Cover & Thomas 2nd Ed.

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

111

110

101

100

011

010

001

000

11

10

01

00

0

1

T
he

to
ta
l
sy
m
b
ol

co
de

bu
dg
et

Kraft Inequality

If height of budget is 1, codeword has height = 2−`i

Pick codes of required lengths in order from shortest–largest

Choose heighest codeword of required length beneath

previously-chosen code (There won’t be a gap because of sorting)

Can always pick codewords if total height,
∑

i 2
−`i ≤ 1

Kraft–McMillan Inequality
∑

i

2−`i ≤ 1 (instantaneous

code possible)

Corollary: there’s probably no point using a non-instantaneous code.

Can always make complete code
∑

i 2−`i =1: slide last codeword left.

Performance of symbol codes

Simple idea: set `i =
⌈
log 1

pi

⌉

These codelengths satisfy the Kraft inequality:
∑

i

2−`i =
∑

i

2−dlog 1/pie ≤
∑

i

pi = 1

Expected length, L̄:

L̄ =
∑

i

pi`i =
∑

i

pidlog 1/pie <
∑

i

pi (log 1/pi + 1)

L̄ < H(p) + 1

Symbol codes can compress to within 1 bit/symbol of
the entropy.

Summary of Lecture 5

Symbol codes assign each symbol in an alphabet a codeword.

(We only considered binary symbol codes, which have binary codewords.)

Messages are sent by concatenating codewords with no punctuation.

Uniquely decodable: the original message is unambiguous

Instantaneously decodable: the original symbol can always be

determined as soon as the last bit of its codeword is received.

Codeword lengths must satisfy
∑

i 2−`i ≤ 1 for unique decodability

Instantaneous prefix codes can always be found
(
if
∑

i 2−`i ≤ 1
)

Complete codes have
∑

i 2−`i=1, as realized by prefix codes made

from binary trees with a codeword at every leaf.

If (big if) symbols are drawn i.i.d. with probabilities {pi}, and
`i=log 1

pi
, then a prefix code exists that offers optimal compression.

Next lecture: how to form the best symbol code when {log 1
pi
} are

not integers.

Optimal symbol codes

Encode independent symbols with known probabilities:

E.g., AX = {A,B,C,D,E}
PX = {0.3, 0.25, 0.2, 0.15, 0.1}

We can do better than `i =
⌈
log 1

pi

⌉

The Huffman algorithm gives an optimal symbol code.

Proof: MacKay Exercise 5.16 (with solution).

Cover and Thomas has another version.

Huffman algorithm

Merge least probable Can merge C with B or (D,E)

→

P (D or E) = 0.25

→

Continue merging least probable, until root represents all events P =1

Huffman algorithm

Given a tree, label branches with 1s and 0s to get code

Code-lengths are close to the information content

(not just rounded up, some are shorter)

H(X) ≈ 2.23 bits. Expected length = 2.25 bits.
Wow! Despite limitations we will discuss, Huffman codes can be very good. You’ll find them inside many systems
(e.g., bzip2, jpeg, mp3), although all these schemes do clever stuff to come up with a good symbol representation.

Huffman decoding

Huffman codes are easily and uniquely decodable because

they are prefix codes

Reminder on decoding a prefix code stream:
— Start at root of tree

— Follow a branch after reading each bit of the stream

— Emit a symbol upon reaching a leaf of the tree

— Return to the root after emitting a symbol. . .

An input stream can only give one symbol sequence, the

one that was encoded

Building prefix trees ‘top-down’

Heuristic: if you’re ever building a tree, consider

top-down vs. bottom-up (and maybe middle-out)

Weighing problem strategy:
Use questions with nearly uniform

distribution over the answers.

How well would this work on the

ensemble to the right?

x P (x)

A1 0.24

A2 0.01

B1 0.24

B2 0.01

C1 0.24

C2 0.01

D1 0.24

D2 0.01

H(X) = 2.24 bits (just over log 4 = 2). Fixed-length encoding: 3 bits

Top-down performing badly

Probabilities for answers to first two questions is (1/2, 1/2)

Greedy strategy ⇒ very uneven distribution at end

Compare to Huffman

Expected length 2.36 bits/symbol

(Symbols reordered for display purposes only)

Relative Entropy / KL

Implicit probabilities: qi = 2−`i

(
∑

i qi = 1 because Huffman codes are complete)

Extra cost for using “wrong” probability distribution:

∆L =
∑

i

pi`i −H(X)

=
∑

i

pi log 1/qi −
∑

i

pi log 1/pi

=
∑

i

pi log
pi
qi

= DKL(p || q)

DKL(p || q) is the Relative Entropy also known as the
Kullback-Leibler divergence or KL-divergence

Gibbs’ inequality

An important result:

DKL(p || q) ≥ 0

with equality only if p = q

“If we encode with the wrong distribution we will do worse

than the fundamental limit given by the entropy”

A simple direct proof can be shown using convexity.

(Jensen’s inequality)

Convexity

f(λx1 + (1−λ)x2) ≤ λf(x1) + (1−λ)f(x2)

x1 x2x� = �x1 + (1� �)x2f(x�)�f(x1) + (1� �)f(x2)
Strictly convex functions:
Equality only if λ is 0 or 1, or if x1 =x2

(non-strictly convex functions contain straight line segments)

Jensen’s inequality

For convex functions: E[f(x)] ≥ f(E[x])

Centre of gravity at
(
E[x],E[f(x)]

)
, which is above

(
E[x], f(E[x])

)

Strictly convex functions:
Equality only if P (x) puts all mass on one value

Remembering Jensen’s

Which way around is the inequality?

f(x) = x2 is a convex function

var[X] = E[x2]− E[x]2 ≥ 0

So we know Jensen’s must be: E[f(x)] ≥ f(E[x])

(Or sketch a little picture in the margin)

Convex vs. Concave

For (strictly) concave functions reverse the inequalities

For concave functions: E[f(x)] ≤ f(E[x])

A (con)cave

Photo credit:
Kevin Krejci on Flickr

Jensen’s: Entropy & Perplexity

Set u(x)=
1

p(x)
, p(u(x))=p(x)

E[u] = E[1
p(x)] = |A| (Tutorial 1 question)

H(X) = E[log u(x)] ≤ logE[u]

H(X) ≤ log |A|

Equality, maximum Entropy, for constant u ⇒ uniform p(x)

2H(X) = “Perplexity” = “Effective number of choices”

Maximum effective number of choices is |A|

Summary of Lecture 6

The Huffman Algorithm gives optimal symbol codes:

Merging event adds to code length for children, so

Huffman always merges least probable events first

A complete code implies negative log probabilities: qi = 2−`i.

If the symbols are generated with these probabilities, the symbol code

compresses to the entropy. Otherwise the number of extra

bits/symbol is given by the Relative Entropy or KL-divergence:

DKL(p || q) =
∑

i pi log pi
qi

Gibbs’ inequality says DKL(p || q) ≥ 0 with equality only when the

distributions are equal.

Jensen’s inequality is a useful means to prove several inequalities in

Information Theory including (it will turn out) Gibbs’ inequality.

