
Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 1
Introduction to Information Theory

Iain Murray, 2010

School of Informatics, University of Edinburgh

Course structure

Constituents:
— ∼17 lectures

— Tutorials starting in week 3

— 1 assignment (20% marks)

Website:
http://tinyurl.com/itmsc

http://www.inf.ed.ac.uk/teaching/courses/it/

Notes, assignments, tutorial material, news (optional RSS feed)

Prerequisites: some maths, some programming ability

Maths background: This is a theoretical course so some general

mathematical ability is essential. Be very familiar with logarithms,

mathematical notation (such as sums) and some calculus.

Probabilities are used extensively: Random variables;

expectation; Bernoulli, Binomial and Gaussian distributions; joint and

conditional probabilities. There will be some review, but expect to

work hard if you don’t have the background.

Programming background: by the end of the course you are

expected to be able to implement algorithms involving probability

distributions over many variables. However, I am not going to teach

you a programming language. I can discuss programming issues in the

tutorials. I won’t mark code, only its output, so you are free to pick a

language. Pick one that’s quick and easy to use.

The scope of this course is to understand the applicability and

properties of methods. Programming will be exploratory: slow,

high-level but clear code is fine. We will not be writing the final

optimized code to sit on a hard-disk controller!

Resources / Acknowledgements

Recommended course text book

Inexpensive for a hardback textbook
(Stocked in Blackwells, Amazon currently cheaper)

Also free online:
http://www.inference.phy.cam.ac.uk/mackay/itila/

Those preferring a theorem-lemma style book could check out:

Elements of information theory, Cover and Thomas

I made use of course notes by MacKay and from CSC310 at the

University of Toronto (Radford Neal, 2004; Sam Roweis, 2006)

Communicating with noise

Signal

Attenuate

Add noise

Boost

5 cycles

100 cycles

Consider sending an audio signal by amplitude modulation: the

desired speaker-cone position is the height of the signal. The figure

shows an encoding of a pure tone.

A classical problem with this type of communication channel is

attenuation: the amplitude of the signal decays over time. (The

details of this in a real system could be messy.) Assuming we could

regularly boost the signal, we would also amplify any noise that has

been added to the signal. After several cycles of attenuation, noise

addition and amplification, corruption can be severe.

A variety of analogue encodings are possible, but whatever is used, no

‘boosting’ process can ever return a corrupted signal exactly to its

original form. In digital communication the sent message comes from

a discrete set. If the message is corrupted we can ‘round’ to the

nearest discrete message. It is possible, but not guaranteed, we’ll

restore the message to exactly the one sent.

Digital communication

Encoding: amplitude modulation not only choice.

Can re-represent messages to improve signal-to-noise ratio

Digital encodings: signal takes on discrete values

Signal

Corrupted

Recovered

Communication channels

modem → phone line → modem

Galileo → radio waves → Earth

parent cell → daughter cells

computer memory → disk drive → computer memory

Real channels are error prone.

Physical solutions:
change system to reduce probability of error

System solution

message

↓
encoded message

↓
corrupted encoding

↓
decoded message

Rather than cooling a system, or increasing power,

we send more robust encodings over the existing channel

But how is reliable communication possible at all?

Repetition codes

Repetition code R3:

hello there → hhheeellllllooo ttthhheeerrreee

↓ (noise added)

hello thfr? ← hhkgeesllllqooc m qttzhhfferrrBme

Possible results of errors:
— Corrected

— Detected

— Undetected

Binary symmetric channel

Binary messages: 0010100111001...

Each 0 or 1 is flipped with probability f=0.1x --�����R10 10 y P (y=0 jx=0) = 1� f ;P (y=1 jx=0) = f ; P (y=0 jx=1) = f ;P (y=1 jx=1) = 1� f:
(1� f)
(1� f)f--���������R10 10

(Figure from MacKay ITILA)

Can repetition codes give reliable communication?

Repetition code performances -en
oder t
hannelf = 10%- r de
oder- ŝ

(Figure from MacKay ITILA)

Probability of error per bit ≈ 0.03. What’s good enough?

Consider a single 0 transmitted using R3 as 000

Eight possible messages could be received:

000 100 010 001 110 101 011 111

Majority vote decodes the first four correctly but the next four result

in errors. Fortunately the first four are more probable than the rest!

Probability of 111 is small: f3 = 0.13 = 10−3

Probability of two bit errors is 3f2(1− f) = 0.03× 0.9

Total probability of error is a bit less than 3%

How to reduce probability of error further? Repeat more! (N times)

Probability of bit error = Probability > half of bits are flipped:

pb =

N∑
r=N+1

2

(
N

r

)
fr(1− f)N−r

But transmit symbols N times slower! Rate is 1/N .

Repetition code performance

Binary messages: 0010100111001...

Each 0 or 1 is flipped with probability f=0.1

(Figure from MacKay ITILA)

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

Rate

more useful codesR5

R3

R61

R1 pb 0.1

0.01

1e-05

1e-10

1e-15

0 0.2 0.4 0.6 0.8 1

Rate

more useful codes

R5
R3

R61

R1

pb = probability of error at each bit of message

What is achievable?

Binary messages: 0010100111001...

Each 0 or 1 is flipped with probability f=0.1

(Figure from MacKay ITILA)

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

Rate

not achievable

H(7,4)

achievable
R5

R3

R1

C

pb 0.1

0.01

1e-05

1e-10

1e-15

0 0.2 0.4 0.6 0.8 1

Rate

not achievableachievable

R5 R1

C

pb = probability of error at each bit of message

Course content

Theoretical content
— Shannon’s noisy channel and source coding theorems

— Much of the theory is non-constructive

— However bounds are useful and approachable

Practical coding algorithms
— Reliable communication

— Compression

Tools and related material
— Probabilistic modelling and machine learning

Storage capacity

3 decimal digits allow 103 = 1,000 numbers: 000-999

3 binary digits or bits allow 23 = 8 numbers:

000, 001, 010, 011, 100, 101, 110, 111

8 bits, a ‘byte’, can store one of 28 = 256 characters

Indexing I items requires at least

log10 I decimal digits or log2 I bits

Reminder: b=log2 I ⇒ 2b=I ⇒ b log 2=log I ⇒ b= log I
log 2

Representing data / coding

Example: a 10×50 binary image

Assume image dimensions are known

Pixels could be represented with 1s and 0s

This encoding takes 500 bits (binary digits)

2500 images can be encoded. The universe is ≈ 298 picoseconds old.

Exploit sparseness

As there are fewer black pixels we send just them.

Encode row + start/end column for each run in binary.

Requires (4+6+6)=16 bits per run (can you see why?)

There are 54 black runs ⇒ 54×16 = 864 bits

That’s worse than the 500 bit encoding we started with!

Scan columns instead: 33 runs, (6+4+4)=14 bits each. 462 bits.

Run-length encoding

Common idea: store lengths of runs of pixels

Longest possible run = 500 pixels, need 9 bits for run length

Use 1 bit to store colour of first run (should we?)

Scanning along rows: 109 runs ⇒ 982 bits(!)

Scanning along cols: 67 runs ⇒ 604 bits

Adapting run-length encoding

Store number of bits actually needed for runs in a header.

4+4=8 bits give sizes needed for black and white runs.

Scanning along rows: 501 bits (includes 8+1=9 header bits)

55 white runs up to 52 long, 55×6 = 330 bits

54 black runs up to 7 long, 54×3 = 162 bits

Scanning along cols: 249 bits
34 white runs up to 72 long, 24×7 = 168 bits

33 black runs up to 8 long, 24×3 = 72 bits (3 bits/run if no zero-length runs; we did need the first-run-colour header bit!)

Rectangles

Exploit spatial structure: represent image as 20 rectangles

Version 1:
Each rectangle: (x1, y1, x2, y2), 4+6+4+6 = 20 bits

Total size: 20×20 = 400 bits

Version 2:
Header for max rectangle size: 2+3 = 5 bits

Each rectangle: (x1, y1, w, h), 4+6+3+3 = 16 bits

Total size: 20×16 + 5 = 325 bits

Off-the-shelf solutions?

Established image compressors:
Use PNG: 128 bytes = 1024 bits
Use GIF: 98 bytes = 784 bits

Unfair: image is tiny, file format overhead: headers, image dims

Smallest possible GIF file is about 35 bytes. Smallest possible PNG file is about 67 bytes.

Not strictly meaningful, but: (98-35)×8 = 504 bits. (128-67)×8 = 488 bits

“Overfitting”

We can compress the ‘Hi Mom’ image down to 1 bit:

Represent ‘Hi Mom’ image with a single ‘1’

All other files encoded with ‘0’ and a naive encoding of the image.

. . . the actual message is one selected from a set of possible

messages. The system must be designed to operate for each

possible selection, not just the one which will actually be

chosen since this is unknown at the time of design.

— Shannon, 1948

Summary of lecture 1 (slide 1/2)

Digital communication can work reliably over a noisy channel. We

add redundancy to a message, so that we can infer what corruption

occured and undo it.

Repetition codes simply repeat each message symbol N times. A

majority vote at the receiving end removes errors unless more than

half of the repetitions were corrupted. Increasing N reduces the error

rate, but the rate of the code is 1/N : transmission is slower, or more

storage space is used. For the Binary Symmetric Channel the error

probability is:
∑N

r=(N+1)/2

(
N
r

)
fr(1− f)N−r

Amazing claim: it is possible to get arbitrarily small errors at a

fixed rate known as the capacity of the channel. Aside: codes that

reach the capacity send a more complicated message than simple

repetitions. Inferring what corruptions must have occurred (occurred

with overwhelmingly high probability) is more complex than a

majority vote. The algorithms are related to how some groups

perform inference in machine learning.

Summary of lecture 1 (slide 2/2)

First task: represent data optimally when there is no noise

Representing files as (binary) numbers:

C bits (binary digits) can index I = 2C objects.

log I = C log 2, C = log I
log 2 for logs of any base, C = log2 I

In information theory textbooks “log” often means “log2”.

Experiences with the Hi Mom image:

Unless we’re careful we can expand the file dramatically

When developing a fancy method always have simple baselines in mind

We’d also like some more principled ways to proceed.

Summarizing groups of bits (rectangles, runs, etc.) can lead to fewer

objects to index. Structure in the image allows compression.

Cheating: add whole image as a “word” in our dictionary.

Schemes should work on future data that the receiver hasn’t seen.

Where now

What are the fundamental limits to compression?

Can we avoid all the hackery?

Or at least make it clearer how to proceed?

This course: Shannon’s information theory relates

compression to probabilistic modelling

A simple probabilistic model (predict from three previous neighbouring

pixels) and an arithmetic coder can compress to about 220 bits.

Why is compression possible?

Try to compress all b bit files to <b bits

There are 2b possible files but only (2b−1) codewords

Theorem: if we compress some files we must expand others

(or fail to represent some files unambiguously)

Search for the comp.compression FAQ currently available at:

http://www.faqs.org/faqs/compression-faq/

Which files to compress?

We choose to compress the more probable files

Example: compress 28×28 binary images like this:

At the expense of longer encodings for files like this:

There are 2784 binary images. I think < 2125 are like the digits

Sparse file model

Long binary vector x, mainly zeros

Assume bits drawn independently

Bernoulli distribution, a single “bent coin” flip

P (xi | p) =

{
p if xi=1

(1− p)≡p0 if xi=0

How would we compress a large file for p=0.1?

Idea: encode blocks of N bits at a time

Intuitions:

‘Blocks’ of lengths N=1 give naive encoding: 1 bit / symbol

Blocks of lengths N=2 aren’t going to help

. . .maybe we want long blocks

For large N , some blocks won’t appear in the file, e.g. 11111111111...

The receiver won’t know exactly which blocks will be used

Don’t want a header listing blocks: expensive for large N .

Instead we use our probabilistic model of the source to guide which

blocks will be useful. For N=5 the 6 most probable blocks are:

00000 00001 00010 00100 01000 10000

3 bits can encode these as 0–5 in binary: 000 001 010 011 100 101

Use spare codewords (110 111) followed by 4 more bits to encode

remaining blocks. Expected length of this code = 3 + 4P (need 4 more)

= 3 + 4(1− (1−p)5− 5p(1−p)4) ≈ 3.3 bits ⇒ 3.3/5 ≈ 0.67 bits/symbol

Quick quiz

Q1. Toss a fair coin 20 times. (Block of N=20, p=0.5)

What’s the probability of all heads?

Q2. What’s the probability of ‘TTHTTHHTTTHTTHTHHTTT’?

Q3. What’s the probability of 7 heads and 13 tails?

you’ll be waiting forever A ≈ 10−100

about one in a million B ≈ 10−6

about one in ten C ≈ 10−1

about a half D ≈ 0.5

very probable E ≈ 1− 10−6

don’t know Z ???

Binomial distribution

How many 1’s will be in our block?

Binomial distribution, the sum of N Bernoulli outcomes

k =
∑N

n=1 xn, xn ∼ Bernoulli(p)

⇒ k ∼ Binomial(N,p)

P (k |N, p) =

(
N

k

)
pk(1− p)N−k

=
N !

(N − k)! k!
pk(1− p)N−k

Reviewed by MacKay, p1

Evaluating the numbers

(
N

k

)
=

N !

(N−k)! k!
, what happens for N=1000, k=500?

(or N=10,000, k=5,000)

Knee-jerk reaction: try taking logs

Explicit summation: log x! =
∑x

n=2 log n

Library routines: lnx! = ln Γ(x+ 1), e.g. gammaln

Stirling’s approx: lnx! ≈ x lnx− x + 1
2 ln 2πx . . .

Care: Stirling’s series gets less accurate if you add lots terms(!),

but it is pretty good for large x with just the terms shown.

See also: more specialist routines. Matlab/Octave: binopdf, nchoosek

Philosophical Transactions (1683-1775) Vol. 53, (1763), pp. 269–271.

The Royal Society. http://www.jstor.org/stable/105732

. . .

Compression for N-bit blocks

Strategy:
— Encode N -bit blocks with ≤ t ones with C1(t) bits.

— Use remaining codewords followed by C2(t) bits

for other blocks.

Set C1(t) and C2(t) to minimum values required.

Set t to minimize average length: C1(t) + P
(
t<
∑N

n=1 xn
)
C2(t)

10
0

10
2

10
4

10
6

0

0.5

1

Block size, N

A
ve

. c
od

e
si

ze
 /

N

Can we do better?

We took a simple, greedy strategy:
Assume one code-length C1, add another C2 bits if that doesn’t work.

First observation for large N :

The first C1 bits index almost every block we will see.

10
0

10
2

10
4

10
6

0

0.5

1

Block size, N

P
(u

se
 e

xt
ra

 C
2 b

its
)

With high probability we can compress a large-N block into

a fixed number of bits. Empirically ≈ 0.47N for p=0.1.

Can we do better?

We took a simple, greedy strategy:
Assume one code-length C1, add another C2 bits if that doesn’t work.

Second observation for large N :

Trying to use <C1 bits means we always use more bits

At N=106, trying to use 0.95 the optimal C1 initial bits

⇒ P (need more bits) ≈ 1− 10−100

It is very unlikely a file can be compressed into fewer bits.

Summary of lecture 2 (slide 1/2)

If some files are shrunk others must grow:

files length b bits = 2b

files <b bits =
∑b−1

c=0 2c = 1 + 2 + 4 + 8 + · · ·+ 2b−1 = 2b − 1

(We’ll see that things are even worse for encoding blocks in a stream.

Consider using bit strings up to length 2 to index symbols:

A=0, B=1, C=00, D=01, E=11

If you receive 111, what was sent? BBB, BE, EB?)

We temporarily focus on sparse binary files:

Encode blocks of N bits, x =00010000001000...000

Assume model: P (x) = pk (1− p)N−k, where k =
∑

i xi =“# 1’s”

Key idea: give short encoding to most probable blocks:

Most probable block has k=0. Next N most probable blocks have k=1

Let’s encode all blocks with k≤ t, for some threshold t.

This set has I1 =
∑t

k=0

(
N
k

)
items. Can index with C1 = dlog2 I1e bits.

Summary of lecture 2 (slide 2/2)

Can make a lossless compression scheme:

Actually transmit C1 = dlog2(I1 + 1)e bits

Spare code word(s) are used to signal C2 more bits should be read,

where C2≤N can index the other blocks with k>t.

Expected/average code length = C1 + P (k > t)C2

Empirical results for large block-lengths N

— The best codes (best t, C1, C2) had code length ≈ 0.47N

— these had tiny P (k > t); it doesn’t matter how we encode k>t

— Setting C1 = 0.95× 0.47N made P (k > t) ≈ 1

≈0.47N bits are sufficient and necessary to encode long blocks

(with our model, p=0.1) almost all the time and on average

No scheme can compress binary variables with p=0.1 into less than

0.47 bits on average, or we could condradict the above result.

Other schemes will be more practical (they’d better be!) and will be

closer to the 0.47N limit for small N .

H/W: a weighing problem

Find 1 odd ball out of 12

You have a two-pan balance with three outputs:

“left-pan heavier”, “right-pan heavier”, or “pans equal”

How many weighings do you need to find the odd ball and

decide whether it is heavier or lighter?

Unclear? See p66 of MacKay’s book, but do not look at his answer until

you have had a serious attempt to solve it.

Are you sure your answer is right? Can you prove it?

Can you prove it without an extensive search of the solution space?

