
Information Theory — Assessed Assignment

Iain Murray and Yichuan Zhang

Due: 4pm Thursday 25 November, 2010

This assignment is out of 20 marks and forms 20% of your final grade.

Remember that plagiarism is a university offence. Please read the policy at:
http://www.inf.ed.ac.uk/teaching/plagiarism.html
In addition, do not show your code, answers or write-up to anyone else.

You should submit this assignment manually to the ITO office in Appleton Tower by the
deadline. Handwritten paper submissions are acceptable if neat and legible.

Policy on computer code: You may write code in the programming language of your choice.
You must hand in a print-out of your code, which will help assure us that you answered the
questions yourself. However, your answers must be clear without the code: marks will only
be awarded to the description of what you did and the numerical answers that you report
along with that description.

Late submissions: The policy stated in the School of Informatics MSc Degree Guide is that
you will not normally be allowed to submit coursework late. See
http://www.inf.ed.ac.uk/teaching/years/msc/courseguide10.html#exam
for exceptions to this, e.g. in case of serious medical illness or serious personal problems.
Any communications regarding late work should be taken up with the ITO.

Part 1: Source coding
Obtain thesis.txt from the course website. This ASCII file contains N=344026 characters
from the alphabet a–z and space.

Programming note: To answer this question you will need to write computer programs.
However, you will not need to implement or even run an actual compression system to
compute how the systems discussed will perform.

1. Character statistics: write a computer program to read in the file and count how many
times each letter in the alphabet appears. Normalizing these counts will give the prob-
ability distribution p(xn) of a character chosen randomly from the file. Compute the
entropy H(Xn) of this distribution and report it in bits to 3 significant figures.

[1 mark]

2. Bigram statistics: compute the distribution over pairs of adjacent characters P (xn, xn+1)
corresponding to selecting a character xn uniformly at random from the file and also
reading in the next character xn+1. While explaining your computations:
(a) Report the joint entropy of this distribution H(Xn, Xn+1) in bits to 3 sig. figures.
(b) Explain why your answer is (or should be!) less than 2H(Xn).
(c) Report the conditional entropy H(Xn+1 |Xn) in bits to 3 significant figures.

[2 marks]

Some real arithmetic encoder implementations perform less well than was described
in the lectures and in the MacKay chapter due to precision limitations in their imple-
mentation. For the following questions assume ideal behaviour, with no limitations on
precision.

1

http://www.inf.ed.ac.uk/teaching/plagiarism.html
http://www.inf.ed.ac.uk/teaching/years/msc/courseguide10.html#exam

3. Compression with known distributions: assume that both the sender and receiver of
a compressed file (somehow) know the distribution you computed in question 1. By
using the (wrong) model that the characters are generated i.i.d. with p(xn), what is the
maximum number of bits an arithmetic coder might use to represent thesis.txt?

Hoping to improve performance, the sender and receiver now use a more sophisti-
cated model. The first character is generated from p(xn), all subsequent characters are
generated from p(xn+1 |xn) computed from the joint probability in question 2. Again
report the maximum number of bits that an arithmetic coder might need to encode
thesis.txt using this known, fixed model.

Explain the steps of the calculations you performed.

[3 marks]

4. Compression with limited precision header: in a real system the compressed file
must contain a description of the model in use. The sender and receiver decide to use
a simple (albeit suboptimal) scheme: each probability is encoded to the next largest
multiple of 2−8 using 8 bits, q∗i = d28 pie/28. These ‘probabilities’ will no longer sum
to one, so they are renormalized before use: qi = q∗i /

∑
j q
∗
j .

How many bits might be required to encode thesis.txt using the models in ques-
tion 3, but using rounded and renormalized distributions? Explaining the steps you
took, report the size of the header, the compressed data and their total: the compressed
file size.

[3 marks]

5. Compression with adaptation: an alternative to including a header is for both the
sender and receiver to infer the distributions as they read and decode the file. The
Laplace prediction rule for the i.i.d. model is:

P (xn+1=ai |x≤n) =
ki + 1

n+ |A|
,

where ki is the number of times character ai has occurred so far in x≤n, and |A|= 27
is the size of the alphabet. Although better models are available, a possible prediction
rule for the bigram model is:

P (xn+1=ai |xn=aj ,x<n) =
ki|j + 1

nj + |A|
,

where ki|j is the number of times character ai has previously appeared after character
aj , and nj is the number of times we have previously seen character aj .

How many bits might be required to compress thesis.txt using each of these pre-
dictions rules? Explain how you obtained your answers.

[3 marks]

Part 2: Digital Fountain Codes

Digital Fountain Codes are codes for the erasure channel. In the binary erasure channel
some bits are replaced with question marks. In general it may be whole packets that
either arrive intact or not at all. In this exercise we will explore the LT code reviewed
in Chapter 50 of the MacKay text.

6. The erasure channel and feedback: Recall the definition of the binary erasure channel
from Mackay, p148. Assume we want to send a large K-bit source file (large enough
to approach close to the limits derived by Shannon). The maximum average rate of
errorless transmission, which does not require feedback, is the capacity C. Write down
K/C an estimated number of uses of the channel needed by such an ideal scheme.
Report your answer in terms of the erasure rate f .

2

Does feedback improve this bound? Assume that the K bits are passed unencoded
into the channel. On average, how many bits will not be received? If the receiver uses
a noiseless feedback channel to ask for retransmission of those bits, how many bits
will still need retransmitting? If the receiver keeps asking for any unknown bits to be
retransmitted, how many uses of the channel are required on average to receive the
whole file?

[2 marks]

7. Repetition code: Assume that we have no feedback, so at no time do we know which
bits the receiver has managed to receive so far. The simplest, but sub-optimal, trans-
mission scheme is to repeatedly send the whole raw file over the channel. In terms of
the erasure rate f , how many times would we need to send each bit so that the proba-
bility that the sender receives that bit is at least (1− 10−15)? Evaluate your answer for
f=0.1 and explain your working.

[1 mark]

8. XOR-ing packets: Many codes use the XOR operator, addition modulo 2 applied to cor-
responding bits in two packets. Work out how to do bit-wise XOR in your programming
environment. The answer is bitxor in Matlab, and the ‘ˆ’ operator in C or Python.
Also work out how, if necessary, to convert between ASCII characters and numbers
that your language will let you XOR. For example to bitwise XOR ‘Z’ and ‘a’ and output
the result, ‘;’, as a character you would do:

chr(ord(’Z’) ˆ ord(’a’)) # in Python
char(bitxor(uint8(’Z’), uint8(’a’))) % in Matlab
printf("%c\n", ’Z’ ˆ ’a’); /* in C */

To display the answer as its ASCII integer value, 59, you could leave off the outer
character conversion in Python/Matlab or change the C printf statement to use ’%d’.

As a warm-up exercise, XOR the ASCII string:
nutritious snacks

with bytes with numerical values:
59 6 17 0 83 84 26 90 64 70 25 66 86 82 90 95 75

and report the ASCII string that results.

[1 mark]

9. Decoding packets from a digital fountain In this question you obtain packets of
length 8 bits, i.e., bytes. (Usually the packets would be longer.) The packets you man-
aged to receive had the following values (in decimal):
79 68 96 55 112 114 65 75 65 103 94 68 27 59 43 115 103 55 20 84 54 69 100

These 23 numbers are also in received.txt on the website, or as a series of bytes in
the 23-byte binary file received.dat.

The packets resulted from adding together particular source bytes of the original mes-
sage, modulo 2. The 23 rows of packets.txt (also listed overleaf) give, in order, the
source bytes that were used for each of the 23 received packets.

As the last received packet only used the 8th source packet, the 8th character of the
original message must be ASCII value 100: ‘d’. The second received packet, 68, was
the XOR of source packets 8 and 10. As you now know packet 8, you should be able to
deduce that the 10th packet was a space character.

Write a computer program to continue propagating your knowledge about the source
message and to decode the message completely. The pseudo-code on MacKay p591
might help. Give a high-level overview of how your code works. Don’t worry if it isn’t
optimized/efficient, as long as it works. Report the decoded string and which of the
received packets you actually used.

[4 marks]

3

A copy of the contents of packets.txt follows. The rows give, in order, the source packets
used in each received packet in Question 9:

6 15 16
8 10
2 10 12
1 2 4 8 11 13 18
3 9 11 15
1 2 4 7 10 14
1 10 17
4 10 14 18
1 2 12 13 14
5 7 14
1 5 14 15 18
4 6 11
3 7 9 15 16
1 2 11 13 15
1 7 9 13
3
7 8 10 13 14
8 9 11 17
1 5 13
7 8 10 14
7 8 10
4 7 8 10
8

4

