
A Multi-Agent System for Distr ibuted Information Retr ieval on the Wor ld Wide
Web

Keith L. Clark and Vasili os S. Lazarou
Logic Programming Section, Department of Computing
Imperial College, 180 Queen's Gate, London SW7 2BZ

{ K.L.Clark, V.Lazarou}@ic.ac.uk

Abstract
In this paper a novel approach concerned with the

general framework of Information Management, is
presented. We use a Multi -Agent System to cope with
the problem of Distributed Information Retrieval. The
Distributed Information Retrieval task deals with the
collection of information from multiple and usually
heterogeneous information sources that exist in a
distributed environment, which in our case is the
World Wide Web.

1 Overview of the system's architecture

The advent of large wide-area networks, Internet is
the most characteristic example, has caused a vast
increase both in the information availabilit y and in
the number of the information sources. This evolution
offers great promise for obtaining and sharing diverse
information conveniently. However, the multitude,
diversity and the dynamic nature of on-line
information sources make accessing any specific
piece of information an extremely diff icult task.

One way to address these issues is to use
information agents. These Distributed Information
Retrieval agents should be able to:

� accept a request from a human or agent client,
� translate this request into a language understood

by the information sources,
� identify the information sources that contain

information relevant to the request,
� pose the request to these sources,
� collect the corresponding results,
� process the returned results and
� present the results to the client.

We have followed this approach in developing our
information retrieval system for the WWW. The
overall agent architecture is as follows (see Figure 1).
The inter-agent communication is based on standard
Knowledge Query Manipulation Language (KQML)

performatives [Patil 94]. Our system supports a
collection of information sites. The notion of an
information site is used to describe a logical entity
that contains a set of information sources. It is a
logical clustering of actual-physical WWW sites.

In each information site, we find the extractor
agent and the information source agent. The
extractor periodically scans through all the
information sources, represented as URLs. These can
be URLs of the top-level web pages of various
research groups, for example. The extractor traverses
through all the local documents (e.g. documents
belonging to that research group) that are accessible
via a chain of links from the top-level page. It
classifies each such page as 'interesting' or not and
extracts from each 'interesting' web page the key
features and represents these features in a
relational/attribute-based form. For example, it will
describe an identified research paper in terms of
attributes like authors, title, topics, keywords,
document location (URL), abstract of document
location (URL) and referenced authors.

Figure 1

Finally, these important features are passed to the
information source agent. The information source

agent handles the query answering process. It accepts
retrieval enquiries and attempts to evaluate them
against the attribute-based information. It acts as an
information gateway to the information sources it
manages.

In most cases, we envision a structure where the
extractor and information source agents are located in
the same local network as the information sources
they manage. However, this is not an architectural
requirement but an eff iciency consideration.

The information source agent also registers an
abstract of the attribute-based information it contains
with an information supply facilitator agent, for the
authors and topics it covers. This facilit ator manages
semantically similar information as sent from the
various source agents. For example, an information
supply facilit ator agent that manages the general area
of AI will generally receive queries to do with any
subtopic of AI and will route it to the appropriate
information source agents that have registered with it.
Finally, each information supply facilit ator, in turn,
advertises its capabiliti es with a matchmaker, the
corner stone of the distributed retrieval system.

In contrast to the above, the user agent is the one
that the end user interacts with. It formulates the
user's query, entered via a web browser form,
translates into an appropriate query message format
and displays the answers.

The user agent makes use of the services of a
corresponding information request facilitator agent.
This facilit ator accepts requests from user agents. It
has the role to identify which information supply
facilit ators have the potential to satisfy this request
through the information source agents that have
registered with them. The request facilit ators initially
find out about information supply facilit ators via
queries to the matchmaker. Thereafter, they maintain
direct information about these supply facilit ators and
the individual information sources that they manage.
This is based on queries that have been successfully
answered by them. Metadata caching and query
planning are among other activities of an information
request facilit ator.

Concluding with the overall agent architecture,
there are two other agents: the matchmaker agent
and the descriptor agent. The matchmaker serves as
an advisor agent that facilit ates the diffusion of the
requests to agents that have expressed an abilit y to
handle them. This is performed by accepting
advertisements from supply facilit ators and
recommendation requests from request facilit ators.
The descriptor contains terminological knowledge
that is exploited both by the extractor during the
elicitation of the key attributes and the information
request facilit ator for potential query reformulation in

order to overcome ontological differences between
the various agents. This knowledge is provided by an
external thesaurus (like WordNet).

2 The roles of the agents

The behaviour of the various agents will be
ill ustrated below in a more detailed way. The
extractor will be described using example(s) that
concern the initialisation phase of our system. The
remaining agents will be presented using example(s)
that concern the query-processing phase.

2.1 Extractor Agent

The tasks to be performed by the extractor include
detecting which web pages contain relevant
information, extracting this information and
representing it in an attribute-based format.

The input of this agent includes primarily a set of
top-level terms that outline the ontology of the agent
and a set of 'top' URLs. These URLs identify the site
(web page(s) of a research group for example). For
our technical report application, this set of terms
describes some particular scientific subjects that are
expected to cover the area(s) of the various
publications to be found at the site. This set is not
meant to be exhaustive. Upon initialisation, the
extractor asks the descriptor to supply it with
synonym topic names and the subtopic names.

The above URLs included in the given set, are
noted as 'top' since we require that all the relevant
information for this specific site be locatable in URLs
accessible from the Web page(s) corresponding to the
URL(s). Local private documents not generally
accessible via the WWW can also be taken into
account. In any case, SGML, HTML and text
pages/files will be examined by the extractor.
Postscript and other formats will also be examined
after being converted to text.

The extractor elicits the links-references of each
page, discards the ones that do not match the name or
type preconditions named above and fetches the next
page. The process stops when all the pages have been
traversed. One heuristic that the extractor uses during
the classification of interesting pages is that a heading
like publications, reports, papers and bibliography are
very good indications of an 'interesting' page.
Similarly, if the 'reports' term appears in a link, this is
also an adequate indication. Another heuristic used is
that terms like proceedings, conference, workshop
indicate a publication type. If the nearby text contains
strings that are names and titles, the page is also
approved.

The extractor goes through the pages of interest to
spot any textual portions that are used to describe
some technical paper. First, the page is partitioned
into smaller textual parts. In our example page, list
tags are used to separate conceptually different
portions of text. Other HTML formatting information
like paragraph tags, horizontal rules or empty lines
can also be used. Note, however that for plain text
pages, the formatting information is limited so the
heuristics to be applied are constrained.

Then each small textual part is examined. The
appearance of a term like publication, bibliography,
papers and reports usually guarantees that the portion
to come will have paper-related information. Other
portions are initially tested to see if there is a chance
to include such information (names, title-like strings
or terms like workshop, conference and proceedings
are used as hints). The attributes that we seek to
extract are the authors, the title, the type and the
location of the report and its abstract

Finally, the detection of the above attributes is
performed with the assistance of other formatting
information. For instance, authors are often enclosed
in address tags; the titles in named anchors while the
locations are always in reference links. Other
possibiliti es include citations and emphasis physical
formatting for titles, name-like strings for authors and
URL-like strings for locations.

The topic of a report is extracted from the title. It
is done by looking for terms inside the title that match
the given topics. For example after the extractor has
elicited the title "A novel deductive query processing
technique" then the inferred topic is "Deductive
Databases" assuming that additional information
about this topic is provided by the descriptor. The
information about referred authors, titles etc., is
classified in a similar manner looking into the
bibliography or references section of an actual
document. After all the pages are examined, this
attribute-based, relational information is passed to the
information source agent (for the format of this
information, see the section about the source agent).

2.2 User Agent

The user enters the query in a Prolog-like form
and sets various arguments that determine a
customised processing. The predicates that the user
may include in the query belong to a predefined,
supported set and they correspond to the most
significant attributes of a technical report. This set
contains the authors, the title, the topic, the
document_type, keywords and referred authors and
titles. An example query is:

document(?D)

and document_type(paper, ?D)
and {author(["KLC"],?D)
and (topic(["CSCW"],?D)
or topic(["AL"], ?D))
and referred_author(["SG"], ?D)
or author(["NS"], ?D)
and topic(["CIS"], ?D) }

This a query requesting URLs of paper documents
which are either authored by "K.L.Clark" (KLC) and
are related to the topic CSCW or the topic Agent
Languages (AL), and include "S.Gregory" (SG) as a
reference. Alternatively, they can be authored by
"N.Skarmeas" (NS) and related to the topic
Cooperative Information Systems (CIS). The various
values are abbreviated in the above query (and the
following ones) just for ill ustration purposes. During
system operation, the values have to be given in full .

The various options for the retrieval process are
the following. One is used to specify the depth of the
query processing by the information source agents
that will eventually receive the query. The first option
is that the source agents need only to access their
attribute database when attempting to answer the
query. The other two search level options indicate
that additional search may be performed. Hence,
whenever a query cannot be answered by the
information contained in the attribute database, any
keyword terms mentioned in the query will be used to
perform a keyword search on the text of the abstracts
and documents correspondingly.

Another option indicates if the results are to be
presented back to the user "all -together" or "one at a
time". There is also an upper bound on the number of
answers that the user desires to see.

Another option turns the current query into a
persistent request. For a persistent request, the user
will be automatically notified of any new documents
that satisfy the query. This is performed by sending a
mobile agent, fed with the current query, to the sites
of the source agents that answered the query
successfully. This mobile agent has a monitoring role.
It periodically interrogates the source agents for any
new documents, collects any that satisfy the query
and propagates them back to the user agent.

A direct addressing choice enables the user to
specify the identities of certain source agents that will
be able to help in the answering of the current query.
This can happen if for a previously posed query
(similar to the current one), some source agent
returned highly relevant results.

After submission of the query, the user agent
transforms it into a KQML-style message structure to
allow easy inspection and transformation by other
agents. The transformed query is then sent to the
corresponding information request facilit ator that
typically resides physically close to the user agent.

The results are displayed through a web interface via
an HTML page.

2.3 Information Request Facili tator

The information request facilit ator agent is in
charge of organising the query answering process. It
accepts queries from user agents and attempts to find
which information supply facilit ators have the
potential to help answer part of or the entire query; in
other words, it acts as a query planner. Some of the
activities it performs include query reformulation,
consulting and subscribing to the matchmaker, and
metadata caching. These roles will be explained
through the use of our example.

Suppose the query given above has arrived at the
information request facilit ator to be processed. If this
mentions authors or topics that the facilit ator has not
previously encountered, it will ask the matchmaker to
match the attribute values that are contained in the
query with corresponding advertisements by supply
facilit ators. The recommend request sent to the
matchmaker would contain the following query:

info_supply_facilitator(?SF)
and {author(["NS"],?SF)
or topic(["CSCW"],?SF)
or topic(["AL"], ?SF)
or referred_author(["SG"], ?SF))
or author(["KLC"],?SF)
or topic(["CIS"], ?SF)}

This request indicates that any match on the
attribute values existing in the original query is
suff icient to make it useful to forward the original
query to any supply facilit ators that have advertised
that attribute value. Recall that the matchmaker holds
advertisements that are abstracted forms of the
information processing capabiliti es of the information
supply facilit ators. Therefore, if we insisted on a
request identical or equivalent to the original query,
we would be in great danger having a very low
success ratio because of some information requests
that can be handled but are not advertised.
Additionally, the supply facilit ators (and after them
the source agents) will actually receive and process
the original query (or an equivalent one). Thus, there
is no danger of obtaining answers irrelevant to what
the query expresses because of the above looser form.
Alternatively, the request facilit ator attempts to
satisfy the query using information previously
supplied from the matchmaker.

Note that during the processing of a match
between author names, we do not insist in exact
match, a "fuzzy" match is suff icient. The notion of
fuzziness in this case declares that a name like
"K.L.Clark" as exists in our example query, will
successfully match any names, like "Keith L. Clark",

"Keith Clark", "Keith Lee Clark", "K. Lee Clark" etc.
In other words, the surname has to be identical while
the first name(s) have to be identical only if given in
full . If only initials are provided, the first name(s) that
begin with these initials are considered as successful
matches. In conclusion, if the matchmaker succeeds
then the query is passed to the supply facilit ators
detected. However, the query that is passed does not
have to be identical to the original one, as will be
explained below in the matchmaker section.

2.4 Matchmaker & Descriptor

Let us now consider matching of topics as
performed by the matchmaker. Topics as scientific
subjects can be classified in a conceptual hierarchy in
contrast to the name values. A topic can have
synonym topics, several subtopics (topics used to
describe a subject more specific than the current one)
and supertopics (topics used to describe a subject
more general than the current one). For example, the
topic of Multi -Agent Systems can be referred also as
Intelli gent Distributed Systems and Agent Software,
has as immediate subtopics WWW agents and
Interface agents while it belongs to the immediate
supertopic of Distributed AI. It should be obvious
that these other topics can have synonyms and sub or
super topics of their own.

The matchmaker should consider this conceptual
hierarchy when it receives a recommend message by
a request facilit ator. As mentioned in the general
system overview, the descriptor agent is the one that
holds terminological knowledge capable of
identifying synonyms, hypernyms and hyponyms of a
specific term. Therefore, when a recommendation
request arrives to the matchmaker containing attribute
values that concern topics, the matchmaker has in
turn to consult the descriptor about the conceptual
placement of this topic in the topic hierarchy.

If for example the recommendation request
involves arriving at the matchmaker the topic of
Multi -Agent Systems all it s synonym topics and
subtopics will be identified by querying the
descriptor. For the supertopics only the ones that
have a maximum difference of two levels will be
returned, so only the "parent" topic Distributed AI
and the "grandparent" topic AI will be returned. Note
however, that the above querying will t ake place only
for topics that have not already been encountered.
This is because the matchmaker caches information
that comes from the descriptor in order to avoid
consulting it continuously.

The matchmaker, during the process of matching
incoming requests with advertisements of supply
facilit ators, will use all the related topics. Moreover,

when it answers the recommendation enquiry it
indicates which topics are supported from the
corresponding supply facilit ators as well as the
relation of these topics to the ones mentioned in the
recommendation enquiry. Therefore, if for example
the matchmaker finds one supply facilit ator that
supports the "Mobile Agent Languages" topic (which
is a subtopic of "Agent Languages") and another one
that supports the "AI Languages" topic (which is a
supertopic of "Agent Languages"), it will i ndicate this
in its response. Consequently, when the request
facilit ator receives this response it will reformulate
the original query sending two different variations of
it. To the first supply facilit ator, it will send a query
which is the same as the original one except that
instead of having the "Agent Languages" topic it will
have the "Mobile Agent Languages" one. Similarly
for the second the topic, "AI Languages" will replace
the "Agent Languages" one.

The relationship (synonym, hyponym, hypernym)
between any requested topic and the actually
supported ones indicated in the matchmaker response,
will be forwarded to the user agent. The user agent
will t ake into account this information when
presenting the final results to the user. Results for
identical or synonym topics will be presented first as
they match the original query most closely. Results
for subtopics will follow by placing the immediate
subtopics first and then subtopics of subtopics and
etc. Finally, results for supertopics will be left at the
end since they match approximately the original
query. Again, immediate supertopics will have
greater display priority.

2.5 Information Supply Facili tator

Let us see now what happens when an information
supply facilit ator receives a query from the
information request facilit ator. Prior to any request
processing, during the set-up of the system, the
information supply facilit ator accepts registrations
from source agents. When they register, the source
agents send an abstracted form of the information
they possess. This summary information includes the
attribute values that occur in a repeated manner in
their information bases. Furthermore, the most
frequent part of that information will be advertised to
the matchmaker that covers a more general scientific
area.

Now when a query arrives to the information
supply facilit ator, the content of its summary
information has to be examined in order to identify
which of the registered source agents contain
information to potentially answer the query. This
operation will be performed using a simpli fied form

of the original query where only the attributes that
can have repeated values will be incorporated
(authors and topics in our case) since these are the
ones included in the summary information. So for our
example this simpli fied form will l ook like:

document(?D)
and {author(["KLC"], ?D)
and {topic(["CSCW"],?D)
or topic(["AL"], ?D)}
and referred_author(["SG"], ?D)}
or {author(["NS"], ?D)
and topic(["CIS"], ?D)}.

If this query can be answered against the summary
information of the supply facilit ator, then the original
query will be routed to the source agents that are
responsible for the successful outcome. Otherwise,
the information request facilit ator will be notified of
the failure.

2.6 Information Source Agent

The final destination of our example query is the
information source agent (or briefly source agent). It
now has to be evaluated against the content of its
information base. After the extractor finishes its
classification processing, it feeds the source agent
with a structured representation of the underlying
information site contents. This representation is in an
attribute-based form. For the technical reports
application the schematic representation is composed
by the following relations:

document_location(doc_id, URL)
abstract_location(doc_id, URL)
author(doc_id, authors)
title(doc_id, title)
topic(doc_id, topics)
document_type(doc_id,doc_type)
keyword(doc_id, keywords)
referred_author(doc_id,authors)
referred_title(doc_id, title)

The document descriptions that provided a
successful query evaluation will be returned to the
user agent. If however the evaluation does not
produce any successful results, then the supply
facilit ator will be notified of this failure. If in
addition, the supply facilit ator receives failures from
all it s source agents selected for this query, it will
report a more general failure back to the request
facilit ator. Concluding, if the request facilit ator
receives general failures from all the supply
facilit ators, then the user agent is notified of a
complete failure.

3 Extensions and related work

Very briefly, the important directions for future
extensions are:

• Multimedia information support, multimedia data
modelli ng and retrieval methods

• More sophisticated use of mobile agents
• User modelli ng and elaborated learning methods
• Ecology of agents as an architectural

complement
• Advanced use of constraints

The existing Distributed Information Retrieval
systems have a significant influence in the
architectural as well as the implementation features of
our system. The concept of some of the agent classes
with a role similar to ours exists in UMDL (such as
the collection interface agents) [Birmingham 95] and
[Vidal 95], IRA (such as userbots, corpusbots)
[Voorhees 94], TSIMMIS (such as classifiers,
translators) [Garcia-Molina 95], Information Brokers
[Fikes 95], SHADE-COINS [Kuokka 95] and
Knowledge Navigator (such as advisory agents)
[Burke 95] among others. Other research work on
multimedia information [Gudivada 95], [Marcus
95a], [Marcus 95b] and [Sistla 95] and for
Information Retrieval techniques [Crowder 95] is
directing some future aspects. For aspects specific to
our agents' functionality, work from [Borghoff 96],
[Espinoza 96], [Goldman 96], [Moukas 96] and
[Turpeinen 96] has an important role.

All the above systems tend to focus on specific
aspects of both the system's architecture and the
agents' responsibiliti es. The UMDL, IRA systems
focus on the mid-level activities providing only
agents similar to our source, user and facilit ator
agents. The TSIMMIS one examines mainly the
retrieval procedure; it does not incorporate for
example the basic user interface agent class. The
SHADE-COINS is the only one that provides the
high level class of the matchmakers but leaves an
architectural gap caused by the lack of facilit ators.
The Knowledge Navigator has a different orientation
since it adopts the browsing paradigm while the
Information Brokers system appears inflexible by
assigning all the activities into one agent class.

4 Summary

� Sites managed as local deductive databases and
WWW as a distributed deductive one.

� Prolog-like query language provides
expressiveness and accuracy concerning the user
needs.

� The predicate set for query formulation
corresponds to characteristic document
properties.

� Completely precise answers.
� The semantics behind the used terms is captured;

polysemy and synonymy are tackled.

� Fully distributed, scalable and modular system;
the information providers are not passive request
servers.

Bibliography

[Birmingham 95] Birmingham, W. P., Durfee, E.H. The
Distributed Agent Architecture of the University of
Michigan Library. In AAA I95 Symposium: Information
Gathering from Heterogeneous, Distributed Environments.
[Borghoff 96] Borghoff , U. M., Karch, H., Schlichter, J. H.
Constraint-based Information Gathering for a Network
Publication System. In PAAM 96.
[Burke 95] Burke, R., Hammond, K.J. Combining
Databases and Knowledge Bases for Assisted Browsing. In
AAA I95 Symposium: Information Gathering from
Heterogeneous, Distributed Environments.
[Crowder 95] Crowder, G., Nicholas, C. An Approach to
Large Scale Distributed Information Systems Using
Statistical Properties of Text to Guide Agent Search. In
CIKM95 IIA Workshop.
[Espinoza 96] Espinoza, F., Hook, K. A WWW Interface to
Adaptive Hypermedia System. In PAAM 96.
[Fikes 95] Fikes, R., Engelmore, R. Network-Based
Information Brokers. In AAA I95 Symposium: Information
Gathering from Heterogeneous, Distributed Environments.
[Garcia-Molina 95] Garcia-Molina, H., Hammer, J.
Integrating and Accessing Heterogeneous Information
Sources TSIMMIS. In AAA I95 Symposium: Information
Gathering from Heterogeneous, Distributed Environments.
[Goldman 96] Goldman, C. V., Langer, A., Rosenschein, J.
S. Musag: agent that learns what you mean. In PAAM 96.
[Gudivada 95] Gudivada, V. N., Raghavan, V. V.,
Vanapipat, K. A Unified Approach to Data Modelli ng and
Retrieval for a Class of Image Database Applications. In
Multimedia Database Systems, Issues and Research
Directions, Springer-Verlag.
[Kuokka 95] Kuokka, D., Harada, L. Supporting
Information Retrieval via Matchmaking. In AAA I95
Symposium: Information Gathering from Heterogeneous,
Distributed Environments.
[Marcus 95a] Marcus, S., Subrahmanian, V. S. Towards a
Theory of Multimedia Database Systems. In Multimedia
Database Systems, Issues and Research Directions,
Springer-Verlag.
[Marcus 95b] Marcus, S. Querying Multimedia Databases
in SQL. In Multimedia Database Systems, Issues and
Research Directions, Springer-Verlag.
[Moukas 96] Moukas, A. Amalthea: Information Discovery
and Filtering using a Multi -agent Ecosystem. In PAAM 96.
[Sistla 95] Sistla, A. P., Yu, C. Retrieval of Pictures Using
Approximate Matching. In Multimedia Database Systems,
Issues and Research Directions, Springer Verlag.
[Turpeinen 96] Turpeinen, M., Saarela, J., Puskala, T.
Architecture for Agent Mediated Personalised News
Services. In PAAM 96.
[Vidal 95] Vidal, J. M., Durfee, E. H. Task Planning
Agents in the UMDL. In CIKM95 IIA Workshop.
[Voorhees 94] Voorhees, E. Information Agents. In AAA I
94 Spring Symposium: Software Agents.

