
The Internet has
revolutionized
multimedia content
distribution, shifting
the way content
producers and users
approach digital
rights. However,
ubiquitous
computing will alter
the digital rights
management
environment even
more, and current
techniques are ill
equipped to deal
with the changes.
Distributed trust can
help to overcome
the challenge of
maintaining digital
rights for ubiquitous
computing, using
cellular automata to
measure trust levels
across a system.

U
biquitous access to computers and
networking has revolutionized the
availability and distribution of dig-
ital multimedia content. For con-

tent producers, the ease and diversity of methods
by which they can disseminate their output has
significantly increased over the last two decades.
For content users, the wider dissemination of
multimedia content has resulted in higher qual-
ity and more choices.

Many of these developments have been driven
by the Internet’s success. It’s easier than ever for
people to find the content they want by typing a
few search terms into Google or a peer-to-peer
file-sharing client. Extending beyond the desk-
top’s boundaries, small, portable, and wirelessly
networked devices such as phones and PDAs are
becoming increasingly multimedia capable and
represent important markets for content.

The ease with which users and creators can
share multimedia content and the proliferation
and increasing variety of devices that can handle
this content produces obvious benefits. But it also
brings drawbacks, forcing traditional content pro-
ducers to face difficult questions. Most fundamen-
tally, in a world of pervasive data sharing, how can
content providers ensure that they’re suitably rec-
ompensed and that their copyright is respected?
This challenge is only set to become more difficult
as we move closer to ubiquitous computing.

We propose using trust as a way to ensure that
content providers’ rights are respected, while
allowing a suitable flow of content. Broadly speak-

ing, the aim is to assign levels of trust to nodes
within a network. As content moves through the
network, we can establish node responsibility with
a system based on cellular automata techniques in
combination with techniques to determine when
digital rights infringement occurs and when users
are acting legitimately. Hence, we could let con-
tent and data flow relatively unimpeded where
trust levels suggest that users are acting legiti-
mately. In areas where frequent infringement
occurs, we could impose more restrictions and
digital rights management (DRM) techniques.

The techniques we’re proposing are novel and
still under development, so it would be grossly
premature to suggest we can provide a solution to
all the difficulties involved. Nevertheless, this is an
area that multimedia research is bound to tackle,
and at the very least, we hope to show that we
can apply new perspectives to the problem.

Ubiquitous computing
Ubiquitous computing’s vision represents the

inevitable fulfillment of the trends in hardware,
software, networking, and social attitudes that we
can see clearly in computing today. Yet, despite
the fact that hardware capabilities have now sur-
passed those found in Mark Weiser’s vision (see
http://www.ubiq.com/hypertext/weiser/UbiHome.
html), ubiquitous computing’s full potential and
its impact on the way people access content has
yet to be fulfilled.1 Despite wide-scale use of mul-
timedia content on mobile and networked
devices, the industry has only partially achieved
the anticipated move toward the fluid flow of data
between devices. Data and software are still tied to
particular devices with networks tightly segregated
to ensure security. For example, the ideal of home
networking with smart appliances collaborating
for the user’s benefit is hampered by the expert
knowledge needed to maintain such a system.

Nonetheless, the evolution of computing sug-
gests a continued gravitation toward the full
ubiquitous computing vision, and research and
development continue to aim toward this goal.
The user’s present focus remains directed at indi-
vidual hardware devices when it comes to com-
puter use. In contrast, ubiquitous computing
shifts away from hardware so that individuals
focus on data ownership rather than hardware.2,3

When we talk about disappearing hardware, we’re
not just considering devices without a user inter-
face but, in fact, something more intrinsic. The
user should be hardware agnostic and care only
about the data they can access.
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Digital rights management
Researchers have developed numerous DRM

techniques to overcome the problems introduced
with widespread digital content distribution over
the Internet. Such techniques are aimed at ensur-
ing that content providers can benefit from their
work and that their copyright and digital rights
are respected. (The “Current DRM-Enabling
Technologies” sidebar details several of these
techniques.) However, the notion of disappear-
ing hardware causes significant problems for

most of the solutions currently in development.
Such methods can’t accommodate the flexibility
of content movement that ubiquitous comput-
ing demands.

For example, consider a possible scenario: If a
user is reading an article on a desktop computer,
she’ll expect the article to also be available on a
handheld device. In addition, she’ll want the
device to activate simply because she picked it
up, or moved away from her desk, even if she
doesn’t own the device in question. She might

Current efforts at protecting digital content have focused on
technologies that work in isolation on an individual machine.
The following technologies represent a number of such devel-
opments aimed at either reducing the opportunity to copy
copyrighted material or detecting such material when it has
been copied.

Trusted Computing Platform

At the core of the Trusted Computing Platform1,2 is the inclu-
sion of a tamper-proof hardware component built into all pro-
tected computers and devices. This component acts in much
the same way as a smart card, providing cryptographic func-
tions that the device vendor can assume to be reliable by virtue
of the component’s tamper-proof nature.

Crucially from a Digital Rights Management (DRM) per-
spective, the Trusted Computing Platform allows trustworthy
and reliable configuration reporting from the device vendor’s
perspective, acting as the content suppliers’ agent.

Digital watermarking

A digital watermark3,4 constitutes additional information
that’s hidden within media data (such as audio or video) so that
the watermark can be recognized computationally but is imper-
ceptible to a human eye or ear. A media player will recognize
the watermark so that it can positively identify the material
being played and thereby ensure that the user has a legitimate
right to access it.

To be effective, the watermark must be robust against trans-
formations of the media data. For example, it should survive
even if a video file is converted to an analog format and then
back to a digital format.

Fingerprinting

Media data can be characterized by its raw signal represen-
tation, without the need to include additional identification
data, such as the ID3 tags present in many MPEG-1 Audio Layer
3 (mp3) files or watermarking techniques. Such a characteriza-
tion is known as the media’s fingerprint.5,6 Among other pur-
poses, we can use fingerprinting for DRM because it lets us

identify content independently of its format. Thus, a file can be
identified and checked against a database of files that the user
is entitled to access.

A second form of fingerprint technology can be found in the
DRM literature. Content producers are conscious of the fact that
deviant users will aim to remove content metadata, signature,
or watermark protection to bypass security and then distribute
content illegitimately. Hence, they’ve developed techniques
that leave behind evidence identifying users if they attempt to
break the DRM security.7,8 A simple example is a watermark that
contains redundant data unique to the content sent to a par-
ticular user. Attempts to remove the watermark might leave
behind this unique data that identifies the copy’s original
owner.
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also want the article displayed at the same posi-
tion in the document. This seamless user experi-
ence is harder to achieve with every restriction
placed on data movement through a network.

Clearly, this liberation of data will also have a
profound effect on the ways we can achieve DRM
in a ubiquitous computing environment. First, it
exacerbates all the problems and challenges the
DRM field currently faces. As we’ve seen, the
multitude of devices forming a ubiquitous com-
puting environment are all highly networked,
allowing fluid data transfer between them. The
proliferation of devices will be achieved largely
through an increase in lower-power and reduced-
resource devices. This hinders the liberal appli-
cation of heavy-duty data-encryption techniques
for data protection.

It also brings with it new difficulties. A more
flexible attitude to hardware ownership means that
there might not be a single owner for any particu-
lar hardware device. Conversely, users will expect
easy access to their data from multiple devices,
often simultaneously. Common content controls,
such as those built on the Trusted Computing
Platform,4 often force access restrictions to a single
device or to media in a single format, possibly pre-
venting it from being transferred from one physi-
cal medium to another. Such restrictions aren’t
compatible with ubiquitous computing’s goals.5,6

Moreover, these techniques don’t generalize or
scale in the ways ubiquitous computing demands.
A new perspective is necessary.

DRM is by no means unique in this respect,
and we find precedent in other areas such as
security, where ubiquitous computing precipi-
tated the loss of the perimeter model ( where, for
example, firewalls and intrusion detection sys-
tems form a boundary around a safe, but other-
wise vulnerable, soft center), thus demanding the
innovation of alternative techniques.

Using trust to protect data
The three major aspects of current DRM tech-

niques that preclude their use in a ubiquitous set-
ting are their

❚ inflexibility with regard to fluid data flow,

❚ centralized nature that relies on enforcement
from a central point—usually the content pro-
ducer or its agent, and

❚ considerable computing power requirements,
for example, for watermark checking.

In contrast, using distributed trust to protect
content producers’ digital rights means the com-
munity enforces the application of digital rights.
Each device in the community has a part in
enforcing the digital rights of the data within the
network as well as a stake in maintaining the
process’ integrity. In this way, we remove any
central weak point while distributing the effort
required among numerous devices.

Undoubtedly, we could achieve a distributed
trust paradigm such as this in many ways, and we
hope future work in the area will develop the
concept further and in new directions. We pre-
sent an initial possibility based on our own work
that illustrates the viability of using distributed
trust to manage digital rights.

In addition to the benefits we’ve already cited,
because of our technique’s distributed nature, we
can also allow limited content distribution falling
under the terms of fair use. Rather than relying
on enforcement from a single centralized point,
the community enforces compliance by ostraciz-
ing deviant users from the community, prevent-
ing them from gaining access to further content.

Our system, based on cellular automata tech-
niques, works by curtailing the distribution of
copyrighted material or software. We add a thin
trust layer to all devices that will let a device’s
neighbors make judgments about its trustwor-
thiness. The process relies on two key character-
istics. First, integrity is maintained through
information sharing. This means that all of a
device’s neighbors will have an influence on its
claimed trustworthiness. This reduces the possi-
bility of any individual device or group of devices
subverting the system. Second, although data is
shared directly only with a device’s neighbors, we
can harness the emergent properties of the cellu-
lar automata network to ensure that conse-
quences have a wider effect.

Building communities
There are numerous ways to deploy trust-

based systems such as the one we describe here.
Similar to other manually maintained trust
mechanisms (such as the buyer and seller feed-
back implementation used by online sites like
ebay7 or PGP’s trust and sign mechanism8), our
work’s focus has been on creating communities
within the ubiquitous computing environment.
Our communities are populated by stakeholders
who benefit from being members of the commu-
nity and from maintaining trust within that
community to police digital rights.
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There are two potential ways to maintain col-
laboration in such a situation. We can maintain
it either with the incentive of mutual reward and
benefit that arises from community membership
or through fear of the retribution that might
result from circumnavigating necessary checks or
processes.

For example, a company might offer con-
sumers willing to participate in the framework the
opportunity to access improved, less restricted, or
cheaper content. One of the benefits to members
of such a community would be greater freedom
to use the material. From the company’s point of
view, anyone consistently flouting copyright
requirements would be penalized.

A trust mechanism’s distributed nature also
makes it ideal for more ad-hoc, unmanaged com-
munities where content doesn’t necessarily
emanate from a single source. The Creative
Commons movement9 is an example of such a
community aimed at content production and
provision on a wider scale, with a well-defined
but flexible and more holistic attitude toward
copyright.

The scheme we present doesn’t require an
assumption of universal collaboration for it to
work. However, we assume a suitable level of
benefit or retribution to enable a sufficient num-
ber of devices to collaborate effectively within
the framework. 

Trust architecture
The cellular automata trust layer we propose

sits between the network stack and the normal
application layer. All data arriving across the net-
work passes through the trust layer. Some of this
data, depending on the state of the cellular
automaton cell at the node, is checked using
standard DRM methods—for example, checking
media files’ watermark integrity or fingerprints.
Due to the processing requirements for water-
mark checking (or equivalent), we won’t want to
check all data. Again, depending on the current
state, a portion of the data is sent directly on to
the application for it to deal with. This latter data
therefore passes from the network stack to the
rest of the operating system just as it would
under normal circumstances.

Figure 1 shows this process and compares it to
normal network functionality. The watermark
checking’s result is fed back into the trust layer
so it can react to any illegitimate data discovered.

To work effectively, the trust layer and water-
mark checking must have some knowledge of the

structure and type of data it’s dealing with.
However, the best way to implement this is out-
side this article’s scope.

The trust layer has some network overhead
itself, but it’s negligible. (We go into more detail
on this point later.)

Because we aren’t considering the watermark
checking techniques in this article, everything
we’re interested in occurs within the cellular
automata trust layer. The cellular automata helps
us keep this layer exceptionally thin to avoid
unnecessary overhead.

In effect, all this layer does is periodically exe-
cute a small mathematical function. The func-
tion uses the result returned by the watermark
checking as parameters, along with data received
over the network from the device’s immediate
neighbors.

Using this function, we determine

❚ whether the current data should be checked
for legitimacy and

❚ the data that must be sent to surrounding
nodes to maintain the system’s security.

The processor and network requirements for
the cellular automata to operate are incredibly
low. To see this, we must consider the transition
function we use.

Cellular-automata-based system
The transition function is a simple mathe-

matical function that we can easily code that
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requires little in the way of processing power. It
forms the basis of the technique that lets us con-
sider the network devices as cellular automata
nodes. Cellular automata are well-known math-
ematical constructs, although they aren’t fully
understood. (See the “Cellular Automata” sidebar
for more information.)

The crucial aspect that allows cellular automata
to be useful for our purposes is their reliance on
many devices sharing information locally to cre-
ate complex properties that emerge across an
entire network of devices. The devices (or cells) are
usually arranged in a grid formation, and each cell
maintains its own state. As time progresses, a cell
will alter its state deterministically based on local
information about the state of its immediate
neighbors. A cell need not have knowledge about
its current state or the wider network, and the
transition function that a cell uses to update its
state can be simple. Yet, the consequent behavior

across the entire network can be highly complex,
and small changes that occur in one part of the
network can have global effects.

The transition function will take in a node’s
current state and the state of its surrounding
nodes and output the current node’s new state.
This function would normally be used uniformly
across a grid of cells, which is how we will use it.
However, unlike a standard cellular automata, we
arrange our cells in a more complex network.

The transition function acts on the current
state at a node over discrete time steps. To define
our transition function, let’s take t to be a discrete
time variable and sn(t) to be the state at time t for
node n. The job of the transition function f is to
determine the value of sn(t + 1). Thus, sn(t + 1) =
f(sn(t)). To define this simple transition function,
we use the following functions:

ln(t + 1) = ln(t) + vn(t + 1) (1)
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Cellular automata, which John von Neumann introduced in
the late 1940s,1 characteristically involve a regular grid of cells,
each of which has an individual state. A discrete time dimen-
sion is added, and at each temporal step, a transition function is
applied that takes as inputs the current state of the cell and its
neighbors and that outputs the cell’s new state. The transition
function is applied at each step and for every cell simultane-
ously. (A large body of literature exists describing properties of
cellular automata, for example, by Stephen Wolfram2 and many
others, including mainstream publications.3)

The most well-known example of a cellular automaton is
John Conway’s “Game of Life,”4 introduced in the 1970s. This
takes a grid of squares where each cell is either dead or alive.

At each time step, a cell’s life status will change depending
on how many living cells surround it. Figure A shows the three
simple rules. However, the resulting behavior on a large grid is
highly complex, so complex in fact that it has been shown to
be Turing complete. This complexity underlines cellular
automata’s beauty and utility—by applying simple rules to each
node, highly complex emergent behavior can result.
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Cellular Automata
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Figure A. Three rules of a cellular automaton in Conway’s

“Game of Life:” (1) A dead cell surrounded by exactly three live

cells will become alive. (2) A live cell surrounded by one or fewer

live cells gets lonely and will die. (3) A live cell surrounded by

four or more live cells gets claustrophobic and will die.



(2)

and

(3)

To fully understand these equations, we need
to define the constants and additional functions

and . We will do this later on, but first we
can explain how we use these functions. The
state sn(t) at time t consists of three rational (float-
ing-point) values ln, vn, and τn—or a node’s legiti-
macy, velocity, and trust, respectively. Velocity is
simply the rate of change of legitimacy over time.
Therefore, we can represent sn as the vector (ln, vn,
τn)T. The transition function f is defined using the
three iterative functions as follows:

(4)

As we can see from Equation 2, the important
pieces of information needed to calculate f are
the values li(t) for 0 < i ≤ k. These are the values
li(t) for the k neighboring nodes of node n. We
can represent each of these state values as a sin-
gle-floating variable, which we transmit across
the network. Hence, little data needs to be shared
between nodes, and this data travels only short
distances, between neighboring nodes. However,
the states need to be updated frequently, which
we discuss in more detail later.

To complete the picture, we must consider the
step functions and . The function rep-
resents whether the node should be checking the
current data (whether the node is active) or not.
If takes the value 1, then data should be
checked, otherwise it can be sent directly on to
the application as normal. The function is deter-
mined as follows:

(5)

As we can see, ln(t) determines the state of .
If ln(t) falls below 0, the node becomes active. If
it rises above LS , it becomes inactive. Otherwise,
it remains in its current state.

The function shows whether illegitimate
data has been detected. In other words, it’s the
value returned from the watermark or other
checking process. In this case, we represent it as

(6)

(Note that a node can only detect illegitimate
data while in an active state.)

The functions’ behavior is strongly influenced
by the constants we use, and these constants will
depend on circumstantial aspects such as the
nature of the network and how reactive the sys-
tem should be. To give a rough idea about the val-
ues these constants might take, see Table 1, which
shows the values we used in our experiments.

Interpreting the transition function
The specific details of the transition function

give an idea of how the process works in terms of
implementation, but they don’t give any indica-
tion as to what the middleware layer actually
does. To give a better understanding, we consid-
er our prototype implementation. Imagine that
we’ve arranged the nodes in a network in a grid.
(This doesn’t represent a realistic scenario, but it’s
important for gaining a better understanding of
the process.) Figure 2a (next page) shows such an
arrangement with the nodes represented as
squares on a rectilinear grid, and Figure 2b shows
the same nodes as points.
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Table 1. Constants we used in our experiments.

Constant Approximate Value Description  
FS 0.88 Security force  

LS 0.1 Security inactive level  

M 1.0 Node mass  

G –Fs × p Gravity*  

T 0.3 Tension  

R 0.9 Resistance  

FT Fs + G Trust force  

TI 0.1 Trust increase  

TD 10.0 Trust decrease  

TM –20.0 Trust minimum 

* This value p ∈ (0, 1) represents the approximate time each node is active.



For a rectilinear network, at each time step, a
node will send a small amount of data—the value
of ln(t) calculated using Equations 1 through 6 —
to each of its four neighbors. In a more complex
network, there might be more or less neighbors
than this. The nodes receiving these values will
run all of them through the transition function
to establish their new values for ln(t + 1). The
important aspect of the transition function isn’t
its explicit details but rather the emergent prop-
erties that result from it. In this case, we can
interpret the resultant behavior to be like an elas-
tic blanket.

So, suppose node n transmits some illegally
copied data to its neighboring node m. Once the
data is recognized by node m, the node will react

by decreasing the trust value associated with the
node n. The trust value represents how trustwor-
thy the neighboring nodes consider a node to be.
In turn, the reduced trust value will cause the
node’s legitimacy value to decrease and become
negative, meaning the node isn’t reputable.

An important distinction exists between trust
and legitimacy. A node might appear untrustwor-
thy without it actually doing anything wrong.
However, if the community agrees that a node
can’t be trusted, the consequence is that it loses
legitimacy, while a single incident to a single
neighbor (which might turn out to be a false accu-
sation) wouldn’t matter. Community decision
making is thus built into the transition function.

Suppose we represent a node’s legitimacy
value by its height. Then under normal circum-
stances the network might look something like
the image in Figure 3a. If a node starts distribut-
ing illegally copied material, however, the result
will become more like the image in Figure 3b.

As Figure 3 shows, the surrounding nodes’ neg-
ative trust value causes the legitimacy values to
reduce, which has a ripple-like effect further out,
causing a dip in the legitimacy values of all nodes
radiating outward. The consequences of this are
three-fold. The reduced values of ln for each of the
surrounding nodes will cause in Equation 5 to
remain fixed with value 1. Hence, the surround-
ing nodes that were occasionally checking con-
tent subsequently become far more diligent,
checking all the content from n.

Crucially, this provides an additional incen-
tive for the neighboring nodes to take counter-
measures against the rogue node n because their
legitimacy is affected adversely by its activities.
This legitimacy is maintained externally by all
the surrounding nodes. If a node doesn’t act
against the rogue node, it’s effectively seen as
being complicit. Because the process is mas-
sively distributed, every node in the network
plays an equal role, and hence, limited oppor-
tunity exists for a node to subvert the process
for its own ends.

Finally, the rogue node and any complicit
nodes will become completely isolated. A still
shot taken from our experiments (see Figure 4)
shows this clearly. The activated nodes surround
the rogue (magenta) nodes and isolate them from
the rest of the network.

Isolating nodes in this way, unfortunately,
presents an opportunity for denial of service
(DoS) attacks. Avoiding such attacks will rely on
the careful balance between allowing some small
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amount of illegitimate data distribution and
reacting aggressively to its discovery. We believe
that the distributed and communal nature of our
proposed scheme will make DoS attacks less like-
ly because numerous nodes would have to work
together to launch an effective DoS attack.
Nonetheless, this area requires further work using
prototypes.

Reducing resource requirements,
increasing robustness

Using a simulated Klemm-Eguíluz-generated
network10 consisting of 10,000 nodes, we tested
the effectiveness of our method to establish if we
could usefully isolate rogue nodes.

Our results were positive and suggest that this
would be an effective, scalable way to enforce
DRM in ubiquitous computing. In our experi-
ments, we were especially interested in discover-
ing whether we could use such a system in a
resource-limited environment.

There are two significant hurdles to overcome
when considering DRM enforcement for ubiqui-
tous computing. First, the resources required to
identify illegitimate content might be signifi-
cant—for example, with watermark testing.
Therefore, we can’t assume that a device can test
every single piece of content or data it receives.
Thus, the system must work effectively even if
only a limited amount of data is tested. Second,
we can’t be sure that every device will participate
correctly. Some devices might not have the
resources to implement any security, while oth-
ers might choose not to participate to cause prob-
lems. The system must therefore be robust in the
face of potentially inactive or rogue nodes.

We performed experiments in a simulated
network, where the movement of illegitimate
data was tracked around the network. We chose
some nodes to act responsibly with others will-
fully distributing illegitimate data. Our intent
was to test the improvements gained by using
our cellular automata technique over a standard
checking method. In the standard case, DRM
checking occurred periodically on the same pro-
portion of data as our cellular automata method,
so that it required the same processing overhead.
However, in the standard case, each node acts in
isolation, with no collaboration or information
sharing between nodes.

In each experiment we did, we set only a fixed
proportion of the nodes to participate in the
DRM checking. We set this proportion of willing
nodes to 85 percent so that 15 percent of the

nodes on the network took no part in either
DRM checking scheme.

For the 85 percent of nodes that were under-
taking analysis, we varied the percentage of data
being checked at each node between 20 and 80
percent in one-percent increments. For each of
these 60 percentage levels, we ran two simulations,
one using the cellular automata technique and one
using the standard technique, to establish the
effectiveness of the two methods. In this way, we
aimed to establish the extent to which reducing
the resources used for checking affected a rogue
node’s ability to distribute illegitimate data. Figure
5 (next page) shows the results we obtained.

Figure 5 shows the stark contrast between the
standard and trust-enabled models. First, in all
cases, the trust-enabled model performed better,
often significantly so. Second, the trust-enabled
model remains far more effective even when the
time spent actively checking data greatly decreases.
The consistency with which the trust-enabled
network can prevent the dissemination of illegit-
imate material—even when checking infrequent-
ly—is surprising. In Figure 6, we can see this more
clearly by taking a slice out of each 3D graph in
Figure 5 at the 20-percent time active point. 

Looking at Figure 6, we see the extent of ille-
gitimate content distribution using the two
methods. In the standard case, approximately 70
percent of the nodes distributed illegal content.
With the trust-enabled nodes, illegal content
sharing was restricted to just more than 15 per-
cent of nodes. Moreover, the untrustworthy
nodes became entirely isolated and could quickly
be identified, as we saw in Figure 4.

Simulations using alternative parameters—dif-
fering levels of content transfer rates and differ-
ing proportions of enabled nodes—produced
similar results.
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Figure 4. Rogue nodes

(magenta) isolated

from the rest of the

network’s active nodes

(green/cyan).



We should mention a number of caveats in
relation to these tests. The Klemm-Eguíluz net-
work has small-world and power-law properties
that many network structures are known to
exhibit, including the Web, the Internet at the
autonomous systems level, and many social net-
works. In our case, we can view such networks as
a community network or a network of ubiquitous
computing devices. In the former case, neighbors
are logical community neighbors, rather than
physical neighbors. The system must dynamically
maintain links based on which devices commu-
nicate with each other. We didn’t include such
dynamic links as part of our simulations. 

In the latter case, each device would be
expected to run the trust-based layer. Because
we’d expect routing to occur in a potentially ad-

hoc nature within the ubiquitous computing
environment, it would be necessary for devices
to be able to read and potentially check data
(depending on the trust status we described ear-
lier) as it passes through the device en route to
another device. In this way, a device’s neighbors
can be maintained while still using the routing
abstraction inherent in IP network addressing.

Real-world implementation
Our current work is directed toward creating

an implementation that we can test on a real
(rather than simulated) network. Based on the
architecture we’ve described, this is initially a
stand-alone application for use within a net-
worked appliance prototype.11 Ultimately, how-
ever, we intend to integrate it into a peer-to-peer
file-sharing application that can be deployed
more widely outside of our isolated laboratory
testing network.

In the longer term, the question remains as to
how to persuade people to use such a system in
the real world. After all, little immediate and nat-
ural incentive exists for users to want to partici-
pate in a scheme that restricts what they can and
can’t do.

Several traits are advantageous to such a system
in this respect. Primarily we intend the incentive
to come from the community itself so that, for
example, inclusion in the community through use
of the system will reward the users. However, tech-
nical advantages of the system also help. 

Crucially, the distributed system is intended
to work even when not all nodes are actively par-
ticipating (see Figure 7). Figure 7 shows the satu-
ration level of nodes sharing illegitimate data,
with the proportion of enabled nodes (nodes par-
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ticipating in the scheme) varying between 50 and
100 percent. The saturation level represents the
maximum proportion of nodes that can freely
transmit illegitimate data between each other
due to “holes” that arise through the patchiness
in participation coverage. The graph shows the
situation when nodes are set to be active only 25
percent of the time—a relatively low amount. For
example, with 50 percent of all nodes enabled,
each checking 100 percent of data received, the
worst possible situation is that the remaining 50
percent can freely transmit illegitimate data
between them.

Figure 7 also shows that the trust-enabled
method consistently outperforms the standard
method. More importantly, however, is that with
over two thirds of nodes participating, even when
only active 25 percent of the time, the trust-
enabled model had a positive impact on identify-
ing and preventing illegitimate data transfer.

We can conclude that the trust-enabled
process might be useful even with less than full
participation. However, the specific results in
Figure 7 should be taken with some caution
because they apply only to the specific parame-
ters tested using the simulation. As the network
characteristics change, the point at which the
process becomes effective is also likely to change.

Looking at real-world scenarios, our assertion
of effectiveness is reinforced because, in general,
only a few users would circumvent any trust-based
process such as the one we present here. A recent
survey of Internet users in the US by the Pew
Internet and American Life Project12 concluded
that of the 22 percent of Internet users who down-
load music, 21 percent say they get video or music
files via peer-to-peer services (amounting to only
around 5 percent of Internet users).

For the users who aren’t distributing illegiti-
mate data, the benefits of using the system over-
all are based on the increased flexibility that the
system affords, the reduced resources required on
each individual device, and benefits that derive
from the community’s existence.

It’s also an important feature of the system
that checking occurs at the receiver’s end. Thus,
the recognition of a device distributing illegiti-
mate data occurs on the surrounding devices,
rather than the device undertaking the distribu-
tion. This acts as a disincentive for users hoping
to circumvent the system because they wouldn’t
be able to safely send data to another user unless
they could be certain that the user was also cir-
cumventing it.

Conclusions
Effective DRM in a ubiquitous computing

environment will rely on finding a technologi-
cal, legal, and social middle ground between the
needs of content providers, users, and technology.
Current technical solutions are a long way from
this middle ground, either because they’re too
weak to provide suitable protection, too dracon-
ian for users to accept them, or too resource
intensive to be used on mobile or embedded
devices.

We believe distributed trust might provide a
step toward this balance. It won’t replace current
DRM techniques, such as watermarking and fin-
gerprinting, but rather integrate with them to
make them more effective. 

Its real strength is that it relies on the collab-
orative sharing of data between devices, a tech-
nique that has been successfully applied to other
areas such as spam filtering.13 By sharing infor-
mation about devices’ trustworthiness, it lets us
implement current techniques far more effec-
tively. Moreover, by harnessing a network’s
emergent properties, we find that little data
needs to be shared, and this data need only be
shared between direct neighboring devices to
enable effective protection across the network.

Nonetheless, the techniques we describe are
still at a relatively early stage of development.
Simulation results are encouraging, but we must
establish the system’s effectiveness in real-world
scenarios. In addition, we must establish com-
munities that provide a suitable balance between
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general incentives and the specific benefits
obtained by circumnavigating trust systems such
as this one. This balance is crucial in ensuring
that enough users participate in order to main-
tain the system’s effectiveness.

Our research aim isn’t to address this issue.
Yet, it’s an important question, the answer to
which might only become clear once we’ve over-
come the technological difficulties of deploying
a wide-scale solution.

Although we’ve applied the techniques we
described here to DRM, they might ultimately
prove beneficial to other areas such as virus pro-
tection and privacy technologies. In ubiquitous
computing, all these areas present significant hur-
dles, though none are likely to be as tricky as those
presented by DRM’s conflicting requirements.

We believe we’ve provided a foundation for
much further work in the area of distributed trust
for DRM. We’re currently preparing a prototype
with the aim of reaffirming our promising simu-
lated results across a real-world network. Ideally,
we’d like to see more effort directed at establishing
distributed trust methods for DRM, moving away
from the centralized and tightly controlled frame-
works that currently dominate the DRM land-
scape. Without such a shift, we will fail to see a
solution that satisfies the competing but important
needs of ubiquitous computing and DRM. MM
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