
 54

EMPIRICAL STUDY OF NOVICE ERRORS AND ERROR PATHS IN
OBJECT-ORIENTED PROGRAMMING

Marie-Helene Ng Cheong Vee

SCSIS, Birkbeck,

University of London
Malet Street

London WC1E 7HX, UK
 marie-helene@dcs.bbk.ac.uk

 http://www.dcs.bbk.ac.uk/~gngch01

Bertrand Meyer
Chair of Software Engineering

ETH Zurich
ETH Zentrum, 8092 Zurich,

Switzerland
 Bertrand.meyer@inf.ethz.ch

http://se.ethz.ch/~meyer/

Keith L. Mannock
SCSIS, Birkbeck,

University of London
Malet Street

London WC1E 7HX, UK
 keith@dcs.bbk.ac.uk

 http://www.dcs.bbk.ac.uk/~keith

ABSTRACT
What kind of errors do beginners make? Objective
answers to this question are essential to the
design and implementation of curricula that don’t
just reflect the educators’ theories but succeed in
conveying a course’s topics and skills to the
students. In the context of a new introductory
programming course based on “inverted
curriculum” ideas, and taking advantage of our
ability to instrument the compiler, we performed
automatic analysis of the — sometimes contorted
— paths students actually take to solve
programming exercises on their own. The results,
collected from three different groups of students
across two unrelated universities, included a
number of surprises. These findings will help
improve future sessions of the course, and are
being used in the design and implementation of an
Intelligent Tutoring System.

Keywords
Errors, Paths, Novices, Inverse Curriculum, Data.

1. INTRODUCTION
The best educational theories are only as good as
the students' success with the subject matter. This
is particularly true with an introductory
programming course, whose goal is to make
students comfortable with the basics of software
development; the results are difficult to gauge
objectively. Various methods used in the past
involved interviews, “talk-alouds” and observing
students while they solve problems in a “looking
over the shoulder” manner. Although they provide
some insight, these techniques are often tedious
to apply and susceptible to observer bias. To
obtain a more objective assessment, we

automated data collection, with the help of the
compiler, by storing “snapshots” of student
programs at every compilation. The resulting
interaction logs allow us to explore the behaviour
of students while they solve programming tasks,
usually outside of any human supervision. The
analysis of the data gave us insights into helping
students learn programming. These insights have
already led to improvements to the next iteration of
the course and will inform the design of the
Intelligent Tutoring System under development.

Section 2 briefly presents related work. Section 3
describes the courses and the organisation of the
study. Section 4 analyses some of the errors
obtained from the interaction logs. Section 5
generalises this analysis to the concept of “error
path” and proposes a notion of behaviour pattern.
Section 6 concludes with a brief discussion of
future work.

2. RELATED WORK
Studies similar in their scope to ours were carried
out three decades years ago for imperative
languages [4]. A more recent study [2] used Java
and the BlueJ environment [3]. It focused on
analyzing novice compilation behaviors by looking
at features such as frequency of compilations,
compilation times and others. Although the
author’s stated goal — to determine if novices
have different characteristic compilation behaviors
— is somewhat different from ours, he does
provide a list of common errors, most of them
syntactic.

3. THE STUDY

3.1 The Course
In October 2003, ten years after the first papers
proposing an Inverted Curriculum for teaching
introductory programming [5], ETH Zurich started
applying these ideas to the Introduction to
Programming course [7], part of the first year of
the computer science program.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.
© 2006 Higher Education Academy
Subject Centre for Information and Computer Sciences

 55

Instead of a bottom-up or top-down approach, the
Inverted Curriculum, also known as “consumer-to-
producer strategy” or “outside-in”, is the process of
progressively opening “black boxes” to unveil the
underlying principles of higher-level concepts
gradually. The “black boxes” are libraries of
reusable components. This approach enables
beginning students to learn both how to re-use
libraries as in real-life and how to build reliable
software. In addition to the sense of achievement,
motivation is improved from working with a real
application: It is fun to play with something that
works, is visible and non-trivial and there is greater
opportunity for active learning.

In building such a course [1], the ETH group
devised: (1) lectures slides and exercises; (2) A
new online textbook called “Touch of class''[8]; (3)
The software: Traffic library and Flat-hunt game.

In all the courses used for this study students learn
programming using Eiffel, chosen since it is a pure
OO language with clear syntax, support for Design
by Contract and other mechanisms, making it a
suitable choice as a teaching language.

3.2 Student Groups
The data came from two instances of the course,
taught with minor variations to two groups of
students across two unrelated universities:

• ETH (Introduction to programming)

In the 2004/2005 session, 22 out of 1802 students
from the Introduction to Programming course [8] at
ETH voluntarily participated in the study. In the
2005/2006 session, an average of 64 out of 1802

students voluntarily participated. The course lasts
a semester (14 weeks) with, each week, two 2-
hour full-class lectures and 3 hours of tutorials in
groups of about 20. In addition to fundamental
OOP and procedural concepts such as objects,
classes, inheritance, control structures, recursion,
students study more advanced topics such as
event-driven and concurrent programming and
fundamental concepts of software engineering.

• Birkbeck (MSc part-time and full-time)
52 out of 751 students taking the OOP course in
the MSc program at Birkbeck2 participated in the
spring term 2004/2005. We required students to
send their logs as part of the coursework
submission although they were not penalised for
not doing so. The course lasts a term (11 weeks).
We taught OOP in Eiffel, including all the basic

1 All group sizes are approximations because of

dropouts and of some re-takes who do not need to
submit coursework.

2 In full-time mode, the degree lasts 1 year and in part-
time mode, it lasts 2 years.

concepts and a few advanced ones (genericity
with inheritance, exception handling) in the first
part of the course; the remaining time was used to
teach Java.

Most of the Birkbeck students are “mature”
students, many already employed full-time in the
IT industry (this explains their request for inclusion
of some Java training). All of them did an
Introduction to Programming module in C++ prior
to the OOP module. By contrast, almost all ETH
students are around 20 years old and fresh out of
high school; they have varying exposure to IT and
programming, with a fair number3 being complete
novices.

While teaching styles differed slightly between the
two groups and instructors were obviously different
in the two institutions, the teaching material was
kept as similar as possible. The assignments were
drawn from the same collection of exercises, but
due to time constraints the Birkbeck students had
fewer of them; the data analysis used the same
seven exercises in all cases.

3.3 Data Collection
To collect interaction logs, we benefited from the
“Melting Ice Technology'' of the free EiffelStudio4
environment used by the students.

This incremental compilation mechanism allows
speedy and efficient development by only
processing the classes changed since the latest
compile step [6]. This feature meant we did not
need to make any change to the compiler:
participating students simply turned on the option
and shared certain files with us. The data saved
includes a copy of the program and some
information relating to compilation. All such data
was treated anonymously, allaying any privacy
concerns.

The interaction logs contained a wealth of
information. We obtained information such as the
errors novices make, their frequency (enabling us
to focus on the most acute problems), the amount
of time taken to accomplish tasks, the number of
compilations, and time between compilations.

3 In the 2004/2005 group, 17% describe themselves as

complete beginners and 31% as having programmed a
little bit. The percentages are 18% and 29%
respectively in the following year.

4 http://www.eiffel.com/products/studio

 56

Figure 1: Student’s path in solving a_,move_of_valid_type and a_type_is_valid

From the logs we were able to reconstruct
scenarios of the student's problem-solving steps
until he reaches the final solution. Examples of the
reconstruction of such scenarios are shown in
Figures 1 and 2 and discussed in Section 5.

4. REVIEW OF ERRORS
We will now examine some of the errors detected
by the study, each selected because of some
significant property; for example some occur in the
work of many students, and some were particularly
unexpected. Some of these errors occur
repeatedly across the exercises, while others
either disappear or occur less often as students
progress through the exercises.

• Extra variables

Some students used more variables than
necessary, in particular in Exercise 2. One subtask
of this exercise was the conversion of a
temperature provided in Celsius to its Fahrenheit
equivalent. Some students wrote code similar to
the one below:

v := 9/5 * value +32
create fahrenheit.make_with_fahrenheit(v)
Result := fahrenheit

They used two variables: one for storing the
results of the conversion (convalue) and the other
for the creation of a new object to represent the
newly converted temperature (fahrenheit). The
one-line solution which does not require declaring
any variables is:
create Result.make_with_fahrenheit(9/5 *
value + 32)

• Feature call errors

Various errors relate to feature calls: omitted target
(f (…) instead of x.f (…)), superfluous target
(Current.f (…), where Current is redundant or
wrong, as detailed in Section 5), wrong target,
wrong type or number of actual arguments, calling
a non-existent feature.

• Rewrite instead of reuse

In the first exercise, students were provided with a
very simple feature is_valid_type which takes a
type of transportation and returns a boolean value
depending on whether the provided type of
transportation is valid or not. This feature was
meant to be used in two of the contracts they had
to write. Some students rewrote most (if not all) of
the body of is_valid_type instead of reusing the
feature. In later exercises, some students, it
seemed, still had not understood the concepts of
modularity and reuse.

• Inheritance

The use of inheritance early on was interesting,
prior to the concept being introduced in class and
only mentioned briefly in an example from the
Traffic software. We may attribute this to the use of
libraries, where students have access to the
source code. Many probably looked at them and
did some research on more advanced topics. This
is part of the reason for using libraries: to enable
the more inquisitive and adventurous students to
learn on their own, by study and imitation of
carefully written software models.

 57

Figure 2: First part of paths followed by student solving a_move_of_valid_type

• Syntactical issues

The usual novice errors such as simple syntax
errors occur, although less than in previous
studies thanks to the use of Eiffel with its simple
syntax (English keywords, optional semicolons, no
“curly braces'' and other cryptic symbols), which
also makes it easier to analyse these errors. Many
of these syntactical errors are simple mistypings.
Other are: placing = before < or > in relational
operators, forgetting the enclosing double quotes
or single quotes for strings and characters
respectively, and using semi-colons to separate
arguments in a call. This last one may be due to
the use of semicolons between formal arguments
in feature declarations, whereas calls use commas
for actuals.

• Type errors

The most common errors were type errors: wrong
type in declaring a variable or argument, assigning
to a variable etc.

• Expressions used as instruction

Some students did not differentiate between
expressions and instructions. This was among the
most common errors.

• Assignment

Problems with the notion of assignment were
apparent when students assigned, for example, i
to j when they meant assigning j to i. This was
trivial to solve in the few cases where it happened.
More serious were errors where an entity of some
type was assigned to an entity of an unrelated
type. Another error, syntactical by nature, is the
confusion of assignment and comparison.
Although Eiffel's syntax is clear – an equals sign
means exactly what = is in mathematics – some
students still compared when they meant to assign
and vice-versa. This might have occurred because
of the influence of other languages. What was

unexpected was to find students assigning some
value to a function. Additionally, in Eiffel,
information hiding principles prohibit one assigning
to a feature of a qualified call (as in x.a := v) even
if the feature “a” is an attribute5. Many students
made this mistake even though the point was
stressed in class.

• Language of instruction

The use of English for the ETH course (where it is
a foreign language for most students) may have
affected the comprehension and completion of the
task. One clear example is in Exercise 6 where
students had to implement a class FRACTION.
Many ETH students used variable names such as
dominator for denominator. This is not an error but
one particular student mistook numerator for
denominator and consequently had the wrong
algorithm and it took him/her quite some time (62
compilations) before realizing the mistake.

• Language overlap

It was obvious that some students in the ETH
batch had studied another programming language,
to varying degrees, prior to starting the course.
The MSc group at Birkbeck had studied C++ and
Java before, so it came as no surprise to see
some language overlap, especially in terms of
syntax. One MSc part-timer even wrote comments
showing Java code that he was seemingly
converting to Eiffel. Typically, some students
would use the keyword this instead of Current or
use logic operators used in languages other than
Eiffel, such as != instead of /= for inequality.

5 In the recent ECMA Eiffel standard (ECMA standard

367:http://se.ethz.ch/eiffel/standard.pdf),such constructs
are allowed; they do not denote the direct assignment to
an attribute but rather a call to the appropriate “setter'”
feature.

 58

5. EXAMPLE PATHS AND BEHAVIOUR

PATTERNS
It was very interesting to observe the various
strategies and patterns used by novices. Some
students were consistent in their ways of solving
problems. Some students seemed to use a
particular strategy over and over again: for
example, the use of backtracking: some students
would try something, change it to something else
to see how it affects output, then come back to the
previous answer and so on; some would make
many changes at one go, while others would
change one thing at a time.

Exercise 1 provides a good example of this
problem-solving style. In this exercise, students
have to write two very similar assertions:
a_move_of_valid_type and a_type_is_valid. Many
students made similar mistakes in producing these
two contracts. Figure 1 illustrates an example of a
student using similar “strategies'' and thus making
similar mistakes in producing these two contracts.
This student uses Current where it is not
necessary, and compares the result of the query
is_valid_type to true in both assertions.

One student had an interesting technique for
solving problems. This student uses a lot of
backtracking and was by far the most prolific
producer of answers. Figure 2 shows the first part
of the path he used to arrive at an answer to
exercise 1, the assertion:
a_move.type /=Void and then
is_valid_type (a_move.type)

The graph separates into two different problem-
solving “strategies”. The first part of the graph is
enough to show how extensively this student
explored the possibilities. At some point, he nearly
has the answer but cannot find the correct
argument to is_valid_type; then drops the first part
of the answer. What is apparent here is that the
student cannot determine the correct argument,
and in trying to find it he introduces more mistakes.
He seems to be trying various options without
really understanding what the problem is and
attending to that, which was the only obstacle to a
correct answer.

6. CONCLUSION AND FUTURE WORK
The initial results of this study have provided
valuable insights into the ways in which students
learn to program: the errors they make and the
ways in which they overcome them; in this paper
we focused on the qualitative rather than
quantitative results.

As it can be seen from [2], programming
environments for other languages (e.g. Java) can

be instrumented for automated data collection (the
ease or difficulty of such a task depends on the
environment). Although, the language used for a
course will influence the results of the data
analysis stage and the results will depend on the
language’s syntax, we believe the thought process
of students will vary little. Using the approach
highlighted in this paper can therefore help
uncover and understand behaviours and error
paths irrespective of programming language.

We are deriving formalisms for representing this
information and are developing a prototypical
intelligent tutoring system based upon the work
described in this paper.

7. ACKNOWLEDGEMENTS
We are grateful to the assistants in the
“Introduction to Programming course” at ETH for
their help in setting up the experiment and for
motivating students to participate in it. Many
thanks also to Emmanuel Stapf for his help with
EiffelStudio. And most of all many thanks to the
participants of the study.

8. REFERENCES
[1] Introduction to Programming. Retrieved 27

Mar 06 from,
http://se.inf.ethz.ch/teaching/ws2004/0001.

[2] Jadud, M. A First Look at Novice Compilation
Behaviour Using BlueJ. Computer Science
Education, 15(1):25-40,2005.

[3] Kölling, M, Quig, B., Patterson, A. and
Rosenberg, J. The BlueJ System and its
Pedagogy. Journal of Computer Science
Education, Special Issue on Learning and
Teaching Object Technology, 13(4), 2003.

[4] Litecky, C. and Davis, G. (1976) A Study of
Errors, Error-Proneness, and Error Diagnosis
in Cobol. Communications of the ACM,
19(1):33-38,1976.

[5] Meyer, B. Towards an OO Curriculum. Journal
of Object-Oriented Programming, 6(2): 76-
81,1993.

[6] Meyer, B. Object-Oriented Software
Construction. Prentice Hall, 2nd edition, 1997.

[7] Meyer, B. The Outside-In Method of Teaching
Introductory Programming. In Manfred Broy
and Alexandr Zamulin(Ed.), Perspective of
System Informatics, Proceedings of Fifth
Andrei Ershov Conference, pages 66-78,
Novosibirsk, July, 2003. Lecture Notes in
Computer Science 2890, Springer-Verlag.

[8] Meyer, B. Touch of Class – Learning to
Program Well. http://se.inf.ethz.ch/touch/,
Online Edition, 2003.

