
GraniteNights – A Multi-agent Visit Scheduler
Utilising Semantic Web Technology

Gunnar AAstrand Grimnes, Stuart Chalmers, Pete Edwards, and Alun Preece

Dept. of Computing Science, University of Aberdeen
Aberdeen, AB24 5UE, Scotland.

{ggrimnes, schalmer, pedwards, apreece}@csd.abdn.ac.uk

Abstract. This paper describes a multi-agent system, GraniteNights,
modelled on the Agentcities project “evening agent” scenario. Gran-
iteNights allows a user to plan an evening’s entertainment in the city
of Aberdeen, Scotland. The application fuses agent and Web technology,
being viewed as an agent-based Web service. In particular, Semantic Web
standards are used to a great extent in delivering the service. The paper
argues that, in fact, the Semantic Web standards are more important for
this type of application than the agent standards. A key feature of the ap-
plication is component re-use: GraniteNights attempts to reuse without
modification existing ontologies wherever possible; it also is comprised
of a number of generic and thus wholly-reusable agents, including a user
profiling agent and a constraint-based scheduler. The system is open in
the sense that most of the individual agents can be invoked directly by
external agent platforms, without going through the Web interface.

1 Introduction

GraniteNights is a multi-agent application which allows a user to schedule an
evening out in Aberdeen (aka the “Granite City”). Intended users of the Gran-
iteNights application are visitors to Aberdeen or anyone else requiring assistance
in identifying suitable dining and entertainment venues, as part of an evening
schedule. The scenario is closely modelled on the Agentcities evening-planning
agent scenario [7]. We view this type of application as a form of (intelligent) Web
service, and have therefore employed Web standards wherever possible. In par-
ticular, we have committed to the Resource Description Framework [11] as the
main content language in order to align our work as closely as possible with the
Semantic Web [2]. The cost of creating RDF to describe the resources of interest
in our application domain - restaurants, public houses, etc. is relatively low (a
form-filling interface facilitates the process). Moreover, we are able to utilise for
the most part existing ontologies represented in DAML+OIL [10], and we retain
forward compatibility with the emerging OWL standard [12].

Agents within the application infrastructure are organised according to a
series of predefined roles: information agents (wrappers for RDF resources - ei-
ther static or dynamically generated from existing WWW sources); profile agent
(manages user data, such as id, password and preferences); constraint-solver

M. Klusch et al. (Eds.): CIA 2003, LNAI 2782, pp. 137–151, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø©M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

138 G.A. Grimnes et al.

agent (maps RDF data to finite domain constraints and produces valid instanti-
ated schedules); evening-agent (receives user queries and controls invocation of
other agents to generate a solution); user-interface agent. The application has
been constructed using the Java Agent DEvelopment framework (JADE) agent
platform1, SICStus Prolog (+ Jasper2) as well as BlueJADE [6] running under
the JBoss3 J2EE application server.

The GraniteNights application was conceived as a vehicle for exploring a
number of issues: integration of agent and Semantic Web standards; utilisation
of off-the-shelf ontologies; re-use of components of information agent systems (at
a number of levels); use of constraint-based scheduling; semantic user profiling;
and not least the deployment of a real and substantial Agentcities application.
We believe that a number of novel contributions arise from this work. Firstly,
we assert that (at least for this type of information agents application) most
of the power comes from the content standards, specifically the Semantic Web
standards. Essentially all of the FIPA4 standards employed in GraniteNights
could easily be replaced by Web services technology, for example SOAP and
WSDL [5]. Perhaps controversially, we discarded FIPA-SL altogether as we took
the view that it brought nothing to our type of application.

Secondly, we believe that GraniteNights demonstrates that currently avail-
able, relatively weak ontologies expressed for the most part simply in RDF
Schema, are the appropriate level of Semantic Web technology for useful ap-
plications. In fact, our view is that stronger ontologies would have been harder
to re-use, because they would have imposed overly-restrictive commitments on
their applicability. Thirdly, GraniteNights embodies several strategies for com-
ponent reuse. Several of the agents are wholly general and would serve as useful
components of other agent systems — the information agents, the ProfileAgent,
and the SchedulerAgent (the latter is in fact already being used in another ap-
plication). Moreover, within the various agents, there is considerable reuse of
code, notably in the information agents that all share the same “shell”.

Finally, we aim to show in this paper that GraniteNights includes a number
of novel technologies, in particular its approach to semantic profiling (allowing
users to incrementally create profiles that are meaningful to them, and portable
across a variety of applications), and the RDF Query By Example language.

The remainder of this paper is organised as follows: Section 2 provides an
overview of the system architecture, and the relationships between the various
components; Section 3 describes the lowest level agents which manage a series of
information resources (encoded using RDF); Section 4 discusses the operation of
the scheduling component, including the constraint solver; Section 5 presents the
user-profile management aspects of GraniteNights; we conclude with a discussion
of lessons learned and related work in Section 6; and discuss suggested extensions
to the architecture in Section 7.

1 http://sharon.cselt.it/projects/jade/
2 http://www.sics.se/sicstus/docs/latest/html/sicstus.html/Jasper.html
3 http://www.jboss.org
4 Foundation for Intelligent Physical Agents, http://www.fipa.org

GraniteNights – A Multi-agent Visit Scheduler 139

2 GraniteNights System Overview

The GraniteNights architecture is presented in Figure 1. The system consists of
a collection of service providing agents, and a central agent which coordinates
the process of delivering a plan, called the EveningAgent. The decomposition
of services into the collection of agents shown (white ovals) aims to maximise
the reusability of the components; where possible, each discrete independent
sub-service is embodied in a separate agent.

The application can be accessed by another software agent via communi-
cation with the EveningAgent, or by a user directly through a Web interface.
For space reasons we are unable to present full details of interactions with the
EveningAgent here, but these are available from our Web site5.

Fig. 1. GraniteNights - Architecture Diagram.

The EveningAgent receives a partially instantiated evening-plan containing a
list of events, possibly including start times and durations. Each event is either
a visit to a public house, a restaurant or a cinema, with optional constraints
on that event. Example constraints include: This Pub must serve Guinness, or
I want to see the film “The Pianist”. The EveningAgent queries the appropri-
ate InformationAgent to get a list of possible events which match the given
constraints. Once all the possible events have been assembled they are passed
to the SchedulerAgent along with the partial plan. The SchedulerAgent then
5 http://www.csd.abdn.ac.uk/research/AgentCities/GNInfo/

140 G.A. Grimnes et al.

generates a set of possible complete plans for the evening, choosing times and
events according to the user specified criteria. One finished plan will then be
returned to the user, who has the option of accepting the plan or asking for the
next solution. The EveningAgent uses a hard-coded collaboration strategy; it
knows about the three information agents available, and makes no attempt at
discovering new information sources. It also works closely with the ProfileAgent
and SchedulerAgent, but is only tied to the external interfaces of these agents,
which makes them pluggable modules of GraniteNights. It would thus be trivial
to deploy a more sophisticated scheduler or profiling mechanism in the future.

The GraniteNights Web interface6 is implemented using Java Server Pages
(JSP), Java Servlets and BlueJADE. BlueJADE allows Web applications to send
and receive agent messages through a gateway agent, which in turn allowed us to
write an EveningAgent client that generates the RDF messages from simple Web
forms completed by the user. Screenshots from the Web interface are presented
in Figure 2. On the left hand side is the input interface, showing that a user has
specified that (s)he wants to go to a public house that serves Hoegaarden at 18.00,
followed by a visit to a cinema showing the film The Pianist and ending their
evening with a meal in a restaurant serving Italian cuisine. The right hand side of
Figure 2 shows one possible plan for their evening generated by GraniteNights.
Note how the user has also specified that the cinema should be a 15 minute
walk (or less) away from the pub, and the restaurant a 15 minute walk away
from the cinema. These proximity constraints are implemented by positioning
each venue available in GraniteNights within a two dimensional grid overlaid on
a map of Aberdeen (see Figure 4 for a section of the full map). There are also
some venues that are outside the map. Three different location constraints are
available: 15 minutes walk, which means within an adjacent square; 30 minutes
walk or a short cab-ride, meaning within two squares; and long taxi-ride which
is everything else. The sections that follow deal with the various agents in more
detail.

Table 1. Ontologies Used By GraniteNights.

Name Developers URI
Pubs Aberdeen http://www.csd.abdn.ac.uk/research/. . .

. . . AgentCities/ontologies/pubs

Beer Aberdeen — ” —/beer

Query By Example Aberdeen — ” —/query

Eveningplan Aberdeen — ” —/eveningplan

Restaurants v.4 Agentcities — ” —/restaurant-v4.daml

Shows v.2.7 Agentcities — ” —/shows-v27.daml

Address Agentcities http://sf.us.agentcities.net/ontologies/address.daml

Calendar Agentcities http://sf.us.agentcities.net/ontologies/calendar.daml

Price Agentcities http://sf.us.agentcities.net/ontologies/price.daml

Contact Details Agentcities http://sf.us.agentcities.net/ontologies/contact-details.daml

6 http://www.csd.abdn.ac.uk/research/AgentCities/GraniteNights

GraniteNights – A Multi-agent Visit Scheduler 141

Fig. 2. GraniteNights – Web Interface.

3 Information Agents

GraniteNights uses three information agents, all of which act as simple wrappers
for RDF data-sources. Each has a simple, consistent query interface based upon
Query By Example7 (QbEx), discussed in Section 3.2. The three agents facilitate
access to information about public houses, cinemas and restaurants in Aberdeen.
The PubAgent and RestaurantAgent both wrap static RDF files, while the Cin-
emaAgent wraps RDF which is dynamically generated from a conventional Web
page supplying up-to-date cinema listing information. Although the information
agents form the basis of GraniteNights, their usefulness is not restricted to this
application, as they are all externally accessible over the Agentcities network,
and were designed with re-use in mind.

All the information agents run off the same code-base with configuration files
used to specify the input source to wrap. As far as possible our information agents
use standard Agentcities ontologies, such as the utility ontologies for addresses,
contact details and calendar information (Table 1).

3.1 Static vs. Dynamic Information Agents

The static information agents facilitate access to RDF data that has been man-
ually generated, containing information about public houses and restaurants in
Aberdeen. Ontology support for the PubAgent is provided by pub and beer
7 http://www.csd.abdn.ac.uk/research/AgentCities/QueryByExample

142 G.A. Grimnes et al.

ontologies developed at Aberdeen (Table 1). The RestaurantAgent uses the
Agentcities restaurant ontology. Examples of instances from these ontologies are
presented in Figures 3 and 5. Instances contain information about the contact
details and services available in each pub or restaurant; in addition they contain
location information, expressed as coordinates within a map of Aberdeen city
centre, as described in Section 2.

<pub:EnglishPub rdf:ID=”#estaminet”>
<pub:liveEntertainment

rdf:resource=”pubs#Sometimes”/>
<pub:location>

<add:Address rdf:ID=”address”>
<add:publicPlaceName>Little John St.

</add:publicPlaceName>
<add:cityName>Aberdeen</add:cityName>
<add:countryName>Scotland

</add:countryName>
<add:doorNumber>8</add:doorNumber>
<add:zipCode>AB10 1FF</add:zipCode>
<add:locationId> 7, 7

</add:locationId>
</add:Address>

</pub:location>
<pub:onLicense>true</pub:onLicense>
<pub:pubName>Estaminet</pub:pubName>

<pub:openingPeriods
rdf:resource=”times#sun thu midnight”/>

<pub:openingPeriods
rdf:resource=”times#weekend three”/>

<pub:servesBeer
rdf:resource=”beer#budweiser”/>

<pub:servesBeer
rdf:resource=”beer#leffeblonde”/>

...
<pub:servesFood>on</pub:servesFood>
<pub:telNumber>01224 622657
</pub:telNumber>

</pub:EnglishPub>

Fig. 3. Example RDF Pub Instance.

Fig. 4. Location Map Example.

<res:Restaurant rdf:about=”#lalombarda”>
<res:name>La Lombarda</res:name>
<res:averageMealDuration>2

</res:averageMealDuration>
<res:address>

<add:Address rdf:about=”rest#lombardaaddr”/>
</res:address>
<res:atmospheres rdf:resource=”res#CasualAtmosphere”/>
<res:atmospheres rdf:resource=”res#RelaxedAtmosphere”/>
<res:caterings rdf:resource=”res#ALaCarte”/>
<res:caterings rdf:resource=”res#HomeDelivery”/>
<res:facilities rdf:resource=”res#SmokingFacility”/>
<res:typeOfCuisine rdf:resource=”res#ItalianCuisine”/>

</res:Restaurant>

Fig. 5. Example RDF Restaurant In-
stance.

GraniteNights also contains a dynamic information agent, which wraps a con-
ventional HTML Web page giving information about films showing at cinemas
in Aberdeen (Figure 6). This information is extracted and converted into RDF
conforming to the Agentcities Shows ontology (Table 1). The extraction and
conversion is done via simple regular expression pattern matching, and would
need to be rewritten if the structure of the HTML source were to change. For
performance reasons, the RDF is extracted once a day and cached locally.

GraniteNights – A Multi-agent Visit Scheduler 143

Original HTML Page.

<s:Shows rdf:ID=”ugc PianistThe”>
<s:time>

<s:ShowScheduleCollection> <!–THUR-6:30PM–>
<s:consistsOf ><s:ShowSchedule>

<s:startTime><c:Calendar><c:calendarDate>
<c:Date>
<c:dateDayOfWeek

rdf:resource=”cal#Thursday” />
<c:year>2003</c:year>
<c:month>1</c:month>

</c:Date>
</c:calendarDate><c:calendarTime>

<c:Time>
<c:format rdf:resource=”cal#24h”/>
<c:timeHour>19</c:timeHour>
<c:timeMinute>30</c:timeMinute>

...
<s:location rdf:resource=”cinemas#ugc” />
<s:description>Certificate: 15</s:description>
<s:show>

<s:CinemaPerformance rdf:ID=”PianistThe”>
<s:title>Pianist, The</s:title>
<s:wwwInformation>http://scoot.co.uk/info?a=5

</s:wwwInformation>
<s:origin>Canada</s:origin>
<s:duration><c:Duration>

<c:durationHour>2</c:durationHour>
<c:durationMinute>28</c:durationMinute>

</c:Duration></s:duration>
<s:artist><s:ArtistCollection>

<s:consistsOf ><s:Artist>
<s:artistName>Adrien Brody</s:artistName>
<s:rolevalue rdf:resource=”shows#Actor”/>

...

Resulting RDF.

Fig. 6. Dynamic Information Agent Example.

3.2 RDF Query by Example

RDF Query By Example (QbEx) is the query language used throughout Gran-
iteNights. It was developed by the authors to fulfil the need for a higher-level
RDF query language than existing triple-based solutions such as RDQL [14],
used in the Jena Semantic Web toolkit8 and RDFStore9. We felt that RDQL,
while a useful tool for the application developer, is not suitable for end-user
queries, as constructing RDQL queries requires detailed insight into the work-
ings of RDF and the RDF schemas used. Our solution is RDF Query By Example
(QbEx) which allows the user to express queries in RDF, partially describing the
RDF instance(s) to be returned. Figure 7 shows a simple example of a QbEx
query, requesting that all pubs serving Guinness be returned. RDF statements
can be constructed using either RDF literals or variables constrained using an
RDF constraint language [9]. Internally the RDF QbEx structure is converted
to RDQL (with automated RDF schema subclass inference). Figure 9 shows a
more sophisticated example using a variable to return all restaurants open after
7 PM, while Figure 8 shows the same query when converted to RDQL by the
QbEx engine.

8 http://www.hpl.hp.com/semweb/jena.htm
9 http://rdfstore.sourceforge.net/

144 G.A. Grimnes et al.

<q:Query>
<q:template>

<p:EnglishPub>
<p:servesBeer

rdf:resource=”beertypes#guinness”/>
</p:EnglishPub>

</q:template>
</q:Query>

Fig. 7. Simple QbEx Example.

SELECT ?x WHERE (?x, ?y, ?z),
(?x, <r # open-time>, ?v x),
(?x, <rdf # type>, <r # restaurant>),
(?x, <r # type>, <r # Tandoori>) AND (?v x > 1900)

Fig. 8. RDQL Generated From the QbEx Query in Figure 9.

<q:Query>
<q:template>

<r:Restaurant>
<r:type rdf:resource=?r#Tandoori” />

<r:open-time>
<cif:variable rdf:ID=”x”>

<cif:varname>x</cif:varname>
</cif:variable>

</r:open-time>
</r:Restaurant>

</q:template>
<q:constraints>

<cif:comparison>
<cif:comparison operator>>

</cif:comparison operator>
<cif:comparison op1>

<cif:variable rdf:about=”#x”/>
</cif:comparison op1>
<cif:comparison op2>

<cif:integerconst>
<cif:constant value>1900

</cif:constant value>

Fig. 9. QbEx Example with Variables.

4 The Scheduling Agent

The purpose of the SchedulerAgent is to take information on available films,
restaurants and pubs (provided by the EveningAgent), together with the pref-
erences expressed by the user on type, time, duration and location (provided by
the user through the Web interface) and create a set of valid schedules, showing
the order, start time and duration of the events requested. To achieve this the
agent implements a finite domain scheduling algorithm using the SICStus finite
domain constraint library [4] to match the user requirements to the given infor-
mation on the available venues, creating sets of valid schedules that satisfy the
request.

GraniteNights – A Multi-agent Visit Scheduler 145

The information given to the SchedulerAgent consists of a piece of RDF
containing the possible venues for the evening (plus the information on those
venues) together with the user requirements. On receipt of this the agent extracts
the set of possible events, which are parsed and asserted as simple prolog facts.
These are then matched with the schedule created from the user’s request, with
the requirements provided by the user constraining the items in the schedule.

<ep:EveningPlan>
<ep:events>

<rdf:Seq>
<rdf: 1>

<ep:Event>
<ep:duration>

<c:Duration>
<c:durationHour>2</c:durationHour>
<c:durationMinute>0</c:durationMinute>

</c:Duration>
</ep:duration>
<ep:place>

<rdf:Alt>
<rdf:li><pub:EnglishPub rdf:about=”pubs#estaminet” /></rdf:li>
<rdf:li><pub:EnglishPub rdf:about=”pubs#wildboar” /></rdf:li>
<rdf:li><pub:EnglishPub rdf:about=”pubs#eastneuk” /></rdf:li>

</rdf:Alt>
</ep:place>

</rdf: 1><rdf: 2>
<ep:Event>

<ep:place>
<rdf:Alt>

<rdf:li><cin:Shows rdf:about=”films#ugc PianistThe” /></rdf:li>
<rdf:li><cin:Shows rdf:about=”films#lighthouse PianistThe” /></rdf:li>

</rdf:Alt>

. . .

% data(<name>,<type>,<open>,<close>,<location>).

data(’ugc PianistThe’,movie,2020,2248,9,6).

data(’lighthouse PianistThe’,movie,1815,2043,5,6).

data(’estaminet’,pub,1000,2700,7,7).

data(’wildboar’,pub,1000,2400,5,5).

data(’eastneuk’,pub,1000,2400,7,5).

Fig. 10. An RDF Fragment and its Equivalent Prolog Representation.

As an example, Figure 10 shows such an RDF fragment detailing two movies
and three pubs, along with their equivalent prolog representation (the data/6
constructs)10. In this example, suppose the user asks for a schedule contain-
ing three items: a pub, a movie and a restaurant (in that order). To represent
these we begin by creating two finite domains, one for the start time of each

10 Space does not permit us to show the full RDF representation, which also contains
a number of restaurants

146 G.A. Grimnes et al.

event requested and one for its duration. The example below shows the internal
representation of the three events along with their respective domains:

% domain (events, start-time, stop-time).
domain([START1,START2,START3],0,104),
domain([DUR1,DUR2,DUR3],4,24).

These predicates set up three tasks each with a start time between 0 and 26hrs
(as some pubs are open till 2 AM) and durations of 1 to 6hrs11. Depending on
the requirements set by the user, these domains are then constrained with the
following information:

– Order & Location Constraints: The initial constraint on the schedule do-
mains comes from the ordering of the events and their relative locations
(described in Section 2). For example, if the three tasks mentioned were
to be ordered as START1, START3, START2, all within 15 minutes walking
distance of each other we would set the following constraints on the domains:

START1 + DUR1 + 1 #=< START3,
START3 + DUR3 + 1 #=< START2

– Time Constraints: These can be provided by the user or left unspecified.
This constrains the time that the user wants to visit the venues, and the
amount of time spent in each location. If specified then we make the START
and DUR variables equal to the values given.

Once constrained, the remaining domain values are matched with the given
possibilities (held in the data/6 format). From this we create a set of possible
evening schedules. Figure 11 shows one such valid schedule. The scheduler creates
as many of these schedules as required (or as many as is possible) and returns
these as a set of possible evening plans (in RDF format).

5 Profile Agent

The ProfileAgent has two tasks within GraniteNights: The first is handling initial
user registration and user authentication on return visits; registration simply
involves setting up an account with a username and a password. The second
task of the ProfileAgent is to keep track of the user’s interests; the interest
model is generated through analysis of previous interactions with the system, so
there is no model available for new users. If a user’s preferences are available,
they will be included in the reply to a successful login request.

To generate the user interest model the ProfileAgent has access to the fol-
lowing information: the constraints specified for each event, the possible evening
plans that were rejected, and the final evening plan that the user accepted. The
11 The measurement scale shown means that the duration and start time can be mea-

sured at a granularity equivalent to 15 minute intervals.

GraniteNights – A Multi-agent Visit Scheduler 147

EveningAgent informs the ProfileAgent of each of these every time a user visits
GraniteNights. Note that there is no information available about why a user
rejects a plan, although some information can be extracted by comparing the
rejected plan(s) with the accepted version.

Fig. 11. An Example Schedule Created by the SchedulerAgent.

<ep:User>
<ep:name>pedwards</ep:name>
<ep:pword>gnes</ep:pword>
<ep:preferences>

<pub:EnglishPub pub:serves=”beer#hobgoblin” />
</ep:preferences>
<ep:interactions>

<rdf:Seq>
<rdf:li>

<ep:Interaction ep:date=”20030315T164433” >
<ep:pref >

<pub:EnglishPub pub:serves=”beer#hobgoblin” />
</ep:pref >

</ep:Interaction>
</rdf:li>
<rdf:li>

<ep:Interaction ep:date=”2003037T153710” >
<ep:pref >

<pub:EnglishPub pub:serves=”beer#flowersale” />
</ep:pref >

</ep:Interaction>
</rdf:li>
<rdf:li>

<ep:Interaction ep:date=”2003032T121567” >
<ep:pref >

<pub:EnglishPub pub:serves=”beer#hobgoblin” />
</ep:pref >

</ep:Interaction>
</rdf:li>

</rdf:Seq>
</ep:interactions>

</ep:User>

Fig. 12. Example RDF Profile Instance.

148 G.A. Grimnes et al.

For example, a user specifies that (s)he wants a single event for the evening,
which should be a pub offering live entertainment. GraniteNights’ first candidate
plan suggests going to the pub Estaminet at 18.00. The user was in that pub
recently, and would like to try something else, so (s)he asks for the next solution.
GraniteNights suggests The Blue Lamp at 18.00 and the user accepts this plan.
The ProfileAgent has now been informed of the user’s constraint that the pub
must have live entertainment, and also that (s)he accepted the second plan and
rejected the first. By comparing the twothe ProfileAgent could determine that
it was the choice of venue that was incorrect, and not the time.

The architecture of GraniteNights was designed to abstract away the imple-
mentation details of the ProfileAgent, allowing us to experiment with different
profiling techniques by simply writing new pluggable ProfileAgent modules. The
current implementation of the ProfileAgent is basic, as it ignores all information
about rejected or accepted plans, and simply caches user specified constraints
for each available information event. Using this information, the most frequently
cited constraint becomes the user’s preference. For example, as shown in Fig-
ure 12, user Pete has used the system on three occasions, asking for pubs serving
Hobgoblin Ale twice and Flowers Ale once, this means that Pete’s current pref-
erence is for pubs serving Hobgoblin. The ProfileAgent stores the user profiles
using RDF; an example profile is shown in Figure 12.

6 Discussion and Related Work

In this paper we have shown that RDF is a good alternative to SL as a content
language for agent interaction. Agents communicating through RDF are not
new, and are indeed central to the Semantic Web vision [17]. However, in the
Agentcities project there has been a commitment to FIPA standards, and thus
to FIPA-SL. Although FIPA-SL is more expressive than RDF (for example, it
allows quantified variables), we feel that the much larger user-base of RDF,
the variety of tools available, and the fact that it is based on XML, make it
a better choice as content language for agent-based Web services. In addition,
we feel that the current expressiveness of RDF is more than sufficient for a
large range of applications. There are several RDF based solutions already being
used within Agentcities, mainly DAML+OIL and OWL for describing ontologies
and DAML-S for service description, but there are also projects committed to
using RDF for content, for example in the Travel Agent Game in Agentcities
(TAGA) [19].

Through developing GraniteNights we have also shown how re-use of compo-
nents and ontologies facilitates construction of advanced composite services, such
as the process of putting together an evening plan. In creating GraniteNights
we have also attempted to supply the Agentcities network with a set of new
reusable components, such as the information agents and their ontologies, in the
hope that others will make use of these and combine them with other services
in a new and interesting manner. This component re-use model is very much
in the spirit of Agentcities and many projects are deploying simple component

GraniteNights – A Multi-agent Visit Scheduler 149

services suitable for integration into larger applications, for example Whitestein
Technologies’ CAMBIA service for currency exchange12, and the agent-based
medical services developed by GruSMA [16].

We have also demonstrated how multi-agent applications can be given a
user-friendly Web interface which still remains a loosely coupled component of
the system by using the gateway agent in BlueJADE. Many other Agentcities
projects are also using BlueJADE, and there is currently significant effort going
into improving integration between agent platforms and Enterprise Application
Servers [3].

GraniteNights is also a first step towards user profiling using RDF for pro-
file acquisition and representation: creating profiles which are meaningful to the
user, and to a range of systems outside the originating application. Learning
symbolic user profiles is a well researched field, for example in [15] where sym-
bolic rules were learned for a user’s meeting preferences. However, the interest in
such profiling in a Semantic Web environment is only now slowly gaining momen-
tum. For example, the Internet Content Rating Association has recently started
a project to investigate “Customization and Personalization through RDF”13.
Some work has also been done in representing user interest profiles with respect
to a specified ontology and, by using RDF, deploying and keeping these profiles
up to date in a different applications. [13].

7 Future Work

GraniteNights came together as a joint project between different members of
the Aberdeen research community, each person bringing different technologies
and different perspectives. We are all excited to see our work integrated into
one application like GraniteNights, and we are all keen to improve the current
implementations of each module.

In the current information layer of GraniteNights the information about pub-
lic houses and restaurants is all hand generated by the project members, and
while this has worked well, there are several short-comings in the current data.
The PubAgent does not have information about drinks served beyond beers, and
the RestaurantAgent does not know about individual dishes. We are currently
exploring links with local goverment and other service providers with a view to
accessing a number of available data-sources to replace some of the current in-
formation agents, and also for generation of new agents, such as an HotelAgent,
CastleAgent and WhiskeyDistilleryAgent.

As mentioned above, the current ProfileAgent implementation is very simple.
We plan to improve this module with a more sophisticated solution in several
steps: Firstly we intend to explore the use of RDF inference to generalise better
when generating user preferences. As shown in Figure 12, user Pete currently has
the preference a pub should serve Hobgoblin, because that is the most frequent
constraint he has specified. However, closer inspection of the ontology shows that
12 http://zurich.agentcities.whitestein.ch/Services/CambiaService.doc
13 http://www.icra.org/cprdf/

150 G.A. Grimnes et al.

Hobgoblin and Pete’s other preferred beer, Flowers, are in fact both sub-classes
of the class Real Ale. A more intelligent ProfileAgent should be able exploit this
relation, and generate the preference Pete likes pubs serving Real Ales. Secondly,
we will look into the use of knowledge intensive Machine Learning algorithms
for generating the profiles, in contrast to the current statistical approach. We
have performed some preliminary work using the Inductive Logic Programming
system Progol for learning from data marked up using RDF [8], and plan to
explore the use of Case-Based Reasoning [1] and Explanation Based Generalisa-
tion [18], as these are also capable of learning from symbolic data. Thirdly we
will explore further the advantages of expressing the user model as RDF, the
re-usability of such a model will enable us to make a ProfileAgent that is not
only usable within GraniteNights, but also within other projects, such as the
upcoming Information Exchange14 project in Aberdeen.

GraniteNights’ current user-interaction model is based on the user sitting at
home, having access to a computer, and planning their evening before they go
out. While this is useful, a more common scenario is a group of people having
been to the cinema, and only when the film has finished agreeing to extend their
evening with a drink in a pub. Having GraniteNights accessible on their PDA
just then would be very useful. Implementing this would also raise several inter-
esting issues surrounding localised information delivery, for generating output
such as “200m down Union St, on your right hand side, there is a pub serving
Director’s Bitter. The current modularised architecture makes writing another
client-interface to work with mobile devices very easy, and we are current ex-
ploring mobile/wireless access to GraniteNights through a local wireless service
provider.

References

1. A. Agnar and P. Enric. Case-based reasoning : Foundational issues, methodological
variations,and system approaches. AI Communications, 7:39–59, 1994.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

3. S. Brantschen and T. Haas. Agents in a j2ee world. Technical report, Whitestein
Technologies AG, 2002.

4. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In Proc. Programming Languages: Implementations, Logics, and Programs,
1997.

5. M. Champion, C. Ferris, E. Newcomer, and D. Orchard. Web services architecture.
W3c working draft, World Wide Web Consortium, 2002.

6. Dick Cowan, Martin Griss, and Bernard Burg. Bluejade - a service for managing
software agents. Technical report, Hewlett-Packard Labs, 2001.

7. J. Dale and L. Ceccaroni. Pizza and a movie: A case study in advanced web-
services, 2002.

8. P. Edwards, G. A. Grimnes, and A. Preece. An empirical investigation of learning
from the semantic web. In ECML/PKDD, Semantic Web Mining Workshop, 2002.

14 http://www.csd.abdn.ac.uk/research/iexchange/

GraniteNights – A Multi-agent Visit Scheduler 151

9. P. Gray, K. Hui, and A. Preece. An expressive constraint language for semantic web
applications. In E-Business and the Intelligent Web: Papers from the IJCAI-01
Workshop, pages 46–53. AAAI Press, 2001.

10. J. Hendler and D. L. McGuinness. The darpa agent markup language. IEEE
Internet Computing, 2000.

11. Ora Lassila and Ralph R. Swick. Resource description framework (rdf) model and
syntax specification. W3c recommendation, World Wide Web Consortium, 1999.

12. D. L. McGuinness and F. van Harmelen. Web ontology language (owl): Overview.
W3c working draft, World Wide Web Consortium, 2003.

13. S. Middleton, H. Alani, N. Shadbolt, and D. De Roure. Exploiting synergy between
ontologies and recommender systems. In 11th International WWW Conference,
2002.

14. L. Miller, A. Seaborne, and A. Reggiori. Three implementations of squishql, a
simple rdf query language. Technical report, Hewlett-Packard Labs, 2002.

15. Tom M. Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and David
Zabowski. Experience with a learning personal assistant. Communications of the
ACM, 37(7):80–91, 1994.

16. A. Moreno and D. Isem. Offering agent-based medical services within the agentc-
ities project. In Proceedings of Agents Applied in Health Care at 15th European
Conference on Artificial Intelligence, 2002.

17. T. R. Payne, R. Singh, and K. Sycara. Browsing schedules - an agent-based ap-
proach to navigating the semantic web. In Proceedings of The First International
Semantic Web Conference (ISWC), 2002.

18. F. van Harmelen and A. Bundy. Explanation based generalisation = partial eval-
uation. AI, 36:401–412, 1988.

19. M. P. Wellman and P. R. Wurman. A trading agent competition for the research
community. In IJCAI Workshop on Agent-Mediated Electronic Commerce, 1999.

	Introduction
	GraniteNights System Overview
	Information Agents
	Static vs. Dynamic Information Agents
	RDF Query by Example

	The Scheduling Agent
	Profile Agent
	Discussion and Related Work
	Future Work

