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We measured the long term spontaneous electrical activity of neuronal networks with different sizes,
grown on lithographically prepared substrates and recorded with multi-electrode-array technology. The
time sequences of synchronized bursting events were used to characterize network dynamics. All net-
works exhibit scale-invariant Lévy distributions and long-range correlations. These observations suggest
that different-size networks self-organize to adjust their activities over many time scales. As predictions
of current models differ from our observations, this calls for revised models.
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The functional organization of (biological) neuronal net-
works has been the focus of much in vivo and in vitro
research. The ability to process information of neuronal
networks derives from their individual abilities to generate
temporal sequences of action potentials and to modulate
the level and patterns of activity at the network level [1].
In vivo cortical studies have revealed physical and func-
tional organizational structures on length scales of �1 mm
[2]. To understand the principles underlying this organi-
zational process, it is important to examine the effect of
network size on temporal patterns of activity. In vitro neu-
ronal networks provide a relatively simple, self-contained
system for examining such questions over a wide range
of time scales and network sizes under stable, controlled
conditions.

In vitro neural networks exhibit rich spontaneous and
stimulated spatiotemporal activity, which are both charac-
terized by synchronized bursting events (SBEs) [3]. Dur-
ing these events, many neurons participate in rapid firing
within a brief �100-ms time window. SBEs are separated
by sporadic firing of individual neurons. In many ways,
SBEs characterize neuronal network dynamics in analogy
to the action potential description of activity at the level of
an individual neuron.

To study the connection between network spatial orga-
nization and temporal behavior, we have developed a novel
lithography method and studied three lithographically
prepared networks [4] with different geometries and sizes:
(1) small 50-cell networks with a quasi-1D 2 mm 3

50 mm geometry, (2) medium 104-cell networks, with a
rectangular 2 mm 3 2 mm geometry, and (3) large 2 ?

106-cell networks, with a circular 11-mm-radius geometry
(Fig. 1). The spontaneous activity of the networks was
noninvasively recorded with a 60-electrode multielectrode
array (MEA) [5–8]. By growing the dissociated neuronal
culture on top of the array, the neurons formed capacitive
coupling to the electrodes, enabling the recording of
2-1 0031-9007�02�88(11)�118102(4)$20.00
action potentials. Then, the electrode array was placed in
a special incubating chamber (our design) for long-term
(weeks) recording [4]. Recordings from ten cultures last-
ing 4–10 days are presented. These recordings summarize
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FIG. 1. (a) Schematic description of the three networks ge-
ometries and the corresponding electrode layout (relative size is
not conserved): (1) a small quasi-1D network, (2) a medium
rectangular network, and (3) a large circular network. All elec-
trodes have 30-mm width and are separated by 200 mm. (b) An
example of eight quasi-1D networks grown atop a multielectrode
array: Each line is a quasi-1D network. Any network with sus-
pected cross talk (e.g., three left columns) were omitted from the
analysis. To ensure the survival of the networks, large networks
were grown on the periphery of the dish which is disconnected
from the quasi-1D networks in the center (scale bar � 1 mm).
A similar layout was used for rectangular networks, dissociated
from the surrounding network.
© 2002 The American Physical Society 118102-1
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the activity of the networks over 8 decades of time (from
ms to days).

While neurons’ activity can be characterized by inter-
spike intervals (ISI) as we describe below, the network ac-
tivity needs an appropriate observable to be defined. To do
so, the recorded activity can be visualized in raster plots
(Fig. 2) which clearly show the appearance of synchro-
nized bursts. For each network, therefore, we first gen-
erated the SBE time sequence. In each raster plot, we
summed over the number of neural spikes within windows
of 100 ms. A time bin in which the spike count exceeds a
prespecified threshold is defined as a synchronized burst-

ne
ur

on
 n

o.

ms

s

s

200 400 600 800 1000

5
10
15
20
25

 n
eu

ro
n 

no
.

2 4 6 8 10 12

5
10
15
20
25

S
B

E

time
2 4 6 8 10 12

 

 

 

(a)

(b)

2D
C

200 400 600 800 1000

 

 

 

2D
R

200 400 600 800 1000

 

 

 

Q
1D

time(sec)
200 400 600 800 1000

 

 

 

FIG. 2. (a) A raster plot summarizing the activity of
27 neurons during 1 s (top) and 12 s (middle) is shown to
illustrate SBE detection. The time axis is divided into bins of
1 ms and 5 ms, respectively. A black line is plotted whenever
a neuron fired at least once during the time bin. The top panel
is an expansion of the third event (middle). A SBE detected
whenever the number of firing neurons in 100-ms time bins
exceeds a threshold (usually fixed at 80% of the total number of
active neurons). Thus, a time series of SBEs is obtained. (b) Ex-
amples of SBE trains from the three network types: large
(top, 2D circular), medium (middle, 2D rectangular), and small
(bottom, quasi-1D).
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ing event (Fig. 2a, bottom panel). The same sequence
can also be presented by the interevent intervals (IEI):
IEI�n� � tn 2 tn21 (in analogy to the ISI definition).

SBE mean densities of approximately 1 event�10 s were
found in all network sizes and irrespective of the details
of the sequence structure. As Fig. 2 shows, however, the
smaller the network, the higher the variance of IEI. To
examine the temporal patterns of activity in the different
networks, analysis was performed on three different time
ranges, ISI time scales of 1–100 ms, IEI time scales of
1–100 s, and longer time scales of (up to 10 h). A plot of
ISI and IEI distributions indicates that neural and network
activities are characterized by a non-Gaussian heavy-tail
interval distribution (not shown), indicating possible tem-
poral scaling behavior.

Dynamical systems composed of a large number of non-
linearly coupled subsystems often obey the Lévy distribu-
tion [9–11]. Such scaling behavior is also characteristic
of some biological systems, at the level of single cells and
networks [12,13]. In order to test whether our neuronal
networks also fall within this category, fits to the Lévy
distribution were performed for single cell as well as for
network activity. In either case, the appropriate observable
was selected for fitting.

On the neuron level, the activity is represented by the
ISI sequence. To study the temporal scaling behavior, the
distribution of ISI increments was introduced:

d�i� � ISI�i� 2 ISI�i 2 1� . (1)

Unlike the ISI, d has a stationary zero mean and is symmet-
rically distributed. We verified these properties by measur-
ing the stability over a moving window of 10 h. The Lévy
distribution Pag of d�i� is given by

Pag�d� �
1
p

Z `

0
exp�2gqa� cos�qd� dq , (2)

where 0 , a # 2 is the index of stability, which deter-
mines the long-tail decay of the distribution, and g . 0 is
a scale factor, which determines the location of the bend-
ing point of the Lévy distribution. Special cases of the
Lévy distribution are the Gaussian distribution (a � 2)
and the Cauchy distribution (a � 1). The probability
density function (pdf) of d�i� for neurons in the small
networks is well fitted with the Lévy distribution over
3–4 decades. The behavior of the medium and large size
networks is more complex. Their pdfs are well fitted with
Lévy distributions for three time decades (Fig. 3a). Above
the characteristic SBE width (�100 ms), the pdf deviates
from the fit to the Lévy distribution.

Following the analogy between the action potential
and the SBE, the distribution of IEI increments is now
considered:

D�i� � IEI�i� 2 IEI�i 2 1� . (3)

Again, we find that the D�i� pdf of the three network
types is well fitted with the Lévy distribution over four
time decades, each with its own distribution parameters
118102-2
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FIG. 3. Temporal statistics from the three network types: dia-
mond: small, circle: medium, and square: large. Plots were ver-
tically shifted for clarity. (a) Histograms of d�i� for two neurons
from each of the three network types. Fits to the data followed
the maximum likelihood method of [14]. The range of fit pa-
rameters were 0.4 # a # 1.4 and 80 # g # 1000 for n � 10
neurons from each of the three network types. (b) Histograms
of D�i� for each network type. Fit parameters: (1) small,
a � 1.05 6 0.09, g � 26 6 7.6 (n � 3), (2) medium, a �
1.05 6 0.47, g � 260 6 210 (n � 3), and (3) large,
a � 1.13 6 0.2, g � 88 6 65 (n � 3). For comparison, a
Gaussian distribution obtained from simulations of the integrate
and fire (I&F) model is plotted at the bottom (solid line).
(c) Power spectrum estimation (periodogram) of the three
network types and I&F model simulations: large (top), medium
(second from top), small (second from bottom), and simulation
(bottom).

(Fig. 3b). A statistical analysis of all networks yielded
a � 1.05 6 0.09, 1.07 6 0.47, and 1.13 6 0.2 for the
small, medium, and large size networks, respectively. For
comparison, a simulation of the leaky integrate and fire
model with a dynamical threshold [15,16] was performed
and produced a Gaussian IEI-increment distribution (see
Fig. 3b).

Gerstein and Mandelbrot [17] proposed that the ISI dis-
tribution of the neurons themselves may obey a Lévy dis-
tribution (as distinct from the increments we have studied).
118102-3
Wise [18], who studied in vivo neural recordings, showed
the existence of a bimodal ISI distribution consisting of a
fast horizontal component followed by a long-tail decay.
The above may be consistent with our observations of the
increments’ Lévy distribution.

The Lévy distribution provides insight about the scaling
behavior in distribution. Characterization of the time
series extending to longer time scales can be deduced
from frequency-domain statistics such as autocorrelation
and power spectral functions. In particularly long signals,
containing large fluctuations and nonstationary trends,
the power spectrum can be estimated by calculating the
count-based periodogram [19]. The data set is divided
into contiguous segments of equal length T . Within each
segment, a discrete sequence �Wm� is formed by further
dividing T into M equal bins and then counting the
number of events within each bin. A discrete Fourier
transform W̃ � f� of length M is then calculated for each
of the segments. Finally, W̃� f� is averaged over segments
to obtain S� f�— the periodogram of the sequence.

The SBE power-spectral estimators in all networks were
found to obey a power-law decay S� f� � fh for low fre-
quencies, regardless of network size (Fig. 3). The structure
over low frequencies is indicative of long-range autocor-
relations in the bursting activity, with positive correlations
on time scales of minutes and hours, since h , 0. These
correlations might indicate that the networks have the ca-
pability to sustain biological memory. Again for compari-
son, a simulation of the leaky integrate and fire method
was performed and produced a nearly flat power spectral
density.

Our observations show that networks of all sizes share
two basic temporal features: scale invariance (Lévy dis-
tribution) on time scales of ISIs and IEIs and long-range
correlations. The former often reflects a self-organizing
feature of excitable systems which are composed of many
nonlinearly coupled subsystems [9,10,20,21]. These fea-
tures are present at both the single cell and network levels
and are shared by networks of all sizes. Looking at the
individual neurons, we find that ISI increments follow the
Lévy statistics up to the 100-ms time scale, which corre-
sponds to the width of the SBE. This implies a separation
of time scales between the neuron activity and the network
behavior. Thus, the Lévy distribution on the network level
reflects the emergent properties of the network in which
the neurons are the subsystems. With respect to the neu-
rons, it implies that they are also composed of nonlinearly
coupled subsystems — the ionic channels.

A comparison of the activity of isolated and self-
contained biological networks with that of artificial neural
networks may yield important insight on organizational
principles of network dynamics. Current models, however,
do not agree with our observations; rather, they exhibit
Gaussian increment distributions and lack long-time
autocorrelations. Thus, our observations suggest that new
models must be developed [12].
118102-3
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In addition, artificial neural networks of different sizes
typically exhibit very different levels of activity (e.g., mean
density of SBE in time; see [22,23] for discussion). The
similarity in the activities of different-size networks sug-
gests that these networks are self-regulated to produce the
observed scale-invariant and long-range correlated behav-
ior and to sustain their mean level of activity. For example,
such self-regulation could be achieved by an adjustment of
synaptic efficacies or neuronal firing threshold [16].

It has been suggested [3] that large neuronal networks
self-organize into functional subunits of the order of sev-
eral millimeters in size. The above interpretation may
agree with the temporal structures we observed in the
small �1-mm networks (see Fig. 2b) and in the spectral
structures of the medium-size networks (see Fig. 3c). In
a separate publication we will quantify and discuss the
emergence of this temporal clustering effect.
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