

1

Informatics: The Methodological Magpie

Alan Bundy Informatics

University of Edinburgh

Different Views of Informatics

- Informatics as science.
- Informatics as engineering.
- Informatics as mathematics.
- Informatics as art.

Informatics as Science

- What is the nature of computation & information?
 - A "science of the artificial" [Herb Simon]
 - Others: economics, linguistics, sociology,...
- Experimental studies of algorithms, architectures and systems.

– Pose hypotheses and test them.

Informatics as Engineering

- How can we build useful ICT products?
 - Design, development, deployment and maintenance.
 - Hardware and/or software.
- Still make and test claims.
 - This software engineering methodology facilitates fast development of dependable systems.
 - This programming language eliminates certain kinds of bug.

Informatics as Mathematics

- What are the fundamental properties of algorithms?
 - Formulate and prove theorems:
 - Complexity of algorithms.
 - Verification of programs.
 - Fundamental limits of computation.
- Theorem as hypothesis; proof as evidence.

Informatics as Art

- Isn't this neat?
 - Building fun systems for their own sake.
- This will change the way you think.
 - Computers doing things you thought impossible.
- "Science in the making" [Bruno Latour]
 - Messy process of proposing, arguing for and convincing others of scientific theories.
 - Involves emotion, polemic, taste, opinion, politics, skulduggery, …
 - Eventually, becomes settled science.
 - Hacking matures to technique.

Which View is Correct?

- Widely different views strongly held.
 - Researchers tend to see just one or two of these views.
- In practice, Informatics is a mixture.
 - Hacking throws up new ideas.
 - Theory cleans them up.
 - Engineering turns them into dependable systems
 - Experimentation tests their scope and limitations.

Wide Range of Methodologies

- Mathematics in theoretical research.
- Science in experimentation.
- Engineering in system building.
- Managerial in project development.
- Art (hacking) in exploration.
- Social science in usability and interfaces.
- Other disciplines in applications,
 - e.g. cognitive science, systems biology,...

Each methodology has its limitations

Exercise: Which Methodologies?

- Which methodologies will you use in your research project?
- How will they be used?
- Will they be combined?

Methodologies in Informatics

- Informatics inherits methodologies from many other disciplines.
- Inevitable to use methodology of a discipline to evaluate a computational model in that discipline.
- But more than this.
 - Due to multi-faceted nature of Informatics.

Engineering

- Especially in hybrid: software/hardware systems:
 - Computer hardware: electronics.
 - Robotics: mechanical and electronics.
- Computer modelling: use engineering method to evaluate model.

Mathematics

- Ubiquitous in theoretical computer science.
 - definitions, theorems, proofs.
- Infer properties of algorithms:
 - complexity, termination, correctness, completeness.
- Build formal framework:
 - logical theory, classification, grammar, FSM.
- Prove property of generic task,
 - e.g., NP completeness of tautology checking.

Statistics & Probability

- Statistics: used to analyse experimental results.
- Probability: used to model uncertainty:
 - In machine learning, e.g., neural nets.
 - In knowledge representation.
 - In modelling systems,
 - e.g., stochastic model checking for system biology or computer failure.

Psychology

- Cognitive modelling:
 compare model to human/animal behaviour.
- Human/computer interaction:

- measure usability of system.

Philosophy

- Conceptual analysis:
 - Clarify the nature of tricky concepts, such as agency, time, belief, meaning, causality, obligation, etc.
- Philosophical logic:
 - Represent commonsense knowledge including time, belief, obligation, etc.
 - Temporal logics also used in model-checking of computer systems.

Linguistics

• Grammars of natural languages:

- Used for speech and written language generation and understanding.

- Conceptual analysis:
 - of the nature of linguistic utterances, objects and processes.

Sociology

- System development:
 - To understand how teams of developers interact and are best organised.
 - To understand how errors arise.
- System deployment:
 - To understand how new technology is received by its intended users.

Biology & Medicine

- Neuroscience:
 - How the brain can be modelled.
 - Brain-inspired computation.
- System biology:
 - Evaluation of computer models, e.g., of cellular interactions.
- Evolution:
 - Evolutionary computing.

Law

Misuse of computers:

- viruses, hacking, data security.

- Intellectual property rights:
 - Patentability of programs is hot issue.
- Legal liability:
 - For computer failures, etc.
- Conceptual analysis using case studies.

Miscellaneous Disciplines

- Business studies:
 - Use of computers in business.
 - Computers as a business.
- Economics:
 - Faithfulness of computer models.
- History:
 - Of computing
- Art criticism:
 - Quality of computer graphics.

Summary

- Informatics is a science,
 - But also it is engineering, mathematics and art.
- Each view brings its own methodology,
 - And all are needed,
 - Since they complement each other's limitations.
- Informatics borrows methodologies from just about every discipline.