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Outline

• Lesson 1:  Evaluation begins with claims
• Lesson 2:  Exploratory data analysis 

means looking beneath results for 
reasons

• Lesson 3:  Run pilot experiments
• Lesson 4:  Control sample variance, rather 

than increase sample size. 
• Lesson 5:  Check result is significant.



Lesson 1:  Evaluation begins 
with claims

• The most important, most immediate and most 
neglected part of evaluation plans.

• What you measure depends on what you want to 
know, on what you claim.

• Claims:  
– X is bigger/faster/stronger than Y
– X varies linearly with Y in the range we care about
– X and Y agree on most test items
– It doesn't matter who uses the system (no effects of subjects) 
– My algorithm scales better than yours (e.g., a relationship 

between size and runtime depends on the algorithm)

• Non-claim:  I built it and it runs fine on some test 
data



Case Study: Comparing two 
algorithms

• Scheduling processors on ring 
network;  jobs spawned as binary 
trees

• KOSO:  keep one, send one to my 
left or right arbitrarily

• KOSO*: keep one, send one to my 
least heavily loaded neighbour

Theoretical analysis went only so far, for unbalanced trees and other 
conditions it was necessary to test KOSO and KOSO* empirically

An Empirical Study of Dynamic Scheduling on Rings of Processors” Gregory, 
Gao, Rosenberg & Cohen, Proc. of 8th IEEE Symp. on Parallel & Distributed 
Processing, 1996



Evaluation begins with claims
• Hypothesis (or claim): KOSO takes longer than 

KOSO* because KOSO* balances loads better
– The “because phrase” indicates a hypothesis about why 

it works.  This is a better hypothesis than the "beauty 
contest" demonstration that KOSO* beats KOSO

• Experiment design
– Independent variables: KOSO v KOSO*, no. of 

processors, no. of jobs, probability job will spawn,
– Dependent variable: time to complete jobs



Useful Terms
Independent variable: A variable that 
indicates something you manipulate in 
an experiment, or some supposedly 
causal factor that you can't 
manipulate such as gender (also 
called a factor)

Dependent variable: A variable that 
indicates to greater or lesser degree 
the causal effects of the factors 
represented by the independent 
variables

F1 F2

X2X1

Y

Independent 
variables

Dependent 
variable



Initial Results
• Mean time to complete jobs:

KOSO: 2825 (the "dumb" algorithm)
KOSO*: 2935 (the "load balancing" algorithm)

• KOSO is actually 4% faster than KOSO* !
• This difference is not statistically significant 

(more about this, later)
• What happened?



Lesson 2: Exploratory data analysis
means looking beneath results for reasons

• Time series of queue length at different 
processors:
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• Unless processors starve (red arrow) there is no advantage to 
good load balancing (i.e., KOSO* is no better than KOSO)



Useful Terms
Time series: One or more dependent 
variables measured at consecutive 
time points 
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Lesson 2: Exploratory data analysis
means looking beneath results for reasons

• KOSO* is statistically no faster than KOSO. Why?
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• Outliers dominate the means, so test isn’t significant



Useful Terms
Frequency distribution: The 
frequencies with which the values in a 
distribution occur (e.g., the 
frequencies of all the values of "age" 
in the room)

Outlier: Extreme, low-frequency 
values.

Mean:  The average.

Means are very sensitive to outliers.
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More exploratory data analysis
• Mean time to complete jobs:

KOSO: 2825 
KOSO*: 2935

• Median time to complete jobs
KOSO:  498.5
KOSO*: 447.0

• Looking at means (with outliers) KOSO* is 4% 
slower but looking at medians (robust against 
outliers) it is 11% faster.



Useful Terms
Median: The value which 
splits a sorted distribution 
in half.  The 50th quantile
of the distribution.

1  2  3  7  7  8  14 15 17 21 22
Mean: 10.6

Median: 8
1  2  3  7  7  8  14 15 17 21 22 1000

Mean: 93.1

Median: 11Quantile: A "cut point" q that 
divides the distribution into 
pieces of size q/100 and 1-
(q/100). Examples: 50th
quantile cuts the distribution 
in half.  25th quantile cuts off 
the lower quartile.  75th
quantile cuts off the upper 
quartile. 



How are we doing?
• Hypothesis (or claim): KOSO takes longer than 

KOSO* because KOSO* balances loads better
• Mean KOSO is shorter than mean KOSO*, median 

KOSO is longer than KOSO*, no evidence that 
load balancing helps because there is almost no 
processor starvation in this experiment.

• Now what? 
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Lesson 3:  Always run pilot experiments

• A pilot experiment is designed less to test the 
hypothesis than to test the experimental 
apparatus to see whether it can test the 
hypothesis.  

• Our independent variables were not set in a way 
that produced processor starvation so we 
couldn't test the hypothesis that KOSO* is better 
than KOSO because it balances loads better.

• Use pilot experiments to adjust independent and 
dependent measures, see whether the protocol 
works, provide preliminary data to try out your 
statistical analysis, in short, test the experiment 
design.



Next steps in the KOSO / KOSO* saga…
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It looks like KOSO* does balance loads 
better (less variance in the queue 
length) but without processor starvation, 
there is no effect on run-time

• Cohen ran another experiment, varying the number of processors in the 
ring:  3, 9, 10 and 20

• Once again, there was no significant difference in run-time. Why?

• Problem variance dominates algorithm variance.



Koso* Koso

With constant runtimes the variance in runtime 
would be due only to the difference between the 
algorithms.

runtime

If runtimes were variable due to one cause, say 
job spawning, the algorithms would still be easy to 
distinguish.

runtime

runtime

But runtimes are variable due to several causes, i.e. 
probability of job spawning , the number of 
processors and the number of job, so the variance in 
runtime is quite high and the algorithms are difficult 
to distinguish.

Causes of Variance



Lesson 4: Control sample variance

• Suppose you are interested in which algorithm runs faster 
on a batch of problems but the run time depends more on 
the problems than the algorithms

• You don't care very much about the problems, so you'd like 
to transform run time to "correct" the influence of the 
problem.  This is one kind of variance-reducing transform.

Mean difference looks small relative 
to variability of run time

Run times for Algorithm 1 and Algorithm 2



What causes run times to vary so much?
Run time depends on the number of processors and on the number of 
jobs (size). The relationships between these and run time are different for 
KOSO and KOSO*  Green: KOSO  Red: KOSO* 
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What causes run times to vary so much?

Can we transform run time with some function of 
the number of processors and the problem size?
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Run time decreases with the 
number of processors, and 
KOSO* appears to use them 
better, but the variance is still 
very high (confidence intervals)



Transforming run time
• Assume each task takes unit time.
• Let S be the number of tasks to be done.
• Let N be the number of processors to do them.
• Let T be the time required to do them all (run time).
• So ki = Si/Ni is best possible run time on task i,

– i.e., perfect use of parallelism.

• Ti / ki measures deviation from perfection.
• The transform we want is Ri = (Ti Ni) / Si.  

– Runtime restated to be independent of problem size and 
number of processors. 



Lesson 5: Check result is significant

Mean Median
KOSO 1.61 1.18
KOSO* 1.40 1.03

Median KOSO* is almost 
perfectly efficient
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Useful terms
Cumulative Distribution Function: 
A "running sum" of all the 
quantities in the distribution:
7  2  5  3 … =>  7  9  14  17  …
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A statistically significant difference!

Mean Standard 
deviation

KOSO 1.61 0.78
0.7KOSO* 1.40

Two-sample t test:

difference between the means

estimate of the variance of the difference between the means

probability of this result if the difference 
between the means were truly zero



The two-sample t test
Mean Standard 

deviation
KOSO 1.61 0.78

0.7KOSO* 1.40



The logic of statistical hypothesis testing
1. Assume KOSO = KOSO*

2. Run an experiment to find the sample statistics 

Rkoso=1.61, Rkoso* = 1.4, and ∆ = 0.21

3. Find the distribution of ∆ under the assumption KOSO = KOSO*

4. Use this distribution to find the probability p of ∆ = 0.21 if  KOSO = KOSO*

5. If the probability is very low (it is,  p<.02) reject KOSO = KOSO*

6. p<.02 is your residual uncertainty that KOSO might equal KOSO*

difference between the means

estimate of the variance of the difference between the means

probability of this result if the difference 
between the means were truly zero



Useful terms
1. Assume KOSO = KOSO*  

2. Run an experiment to get the 
sample statistics

Rkoso=1.61, Rkoso* = 1.4, and ∆ = 0.21

3.    Find the distribution of ∆ under the 
assumption KOSO = KOSO*

4.    Use this distribution to find the 
probability of ∆ = 0.21 given H0

5. If the probability is very low, reject 
KOSO = KOSO*

6. p is your residual uncertainty

This is called the null hypothesis (H0 ) 
and typically is the inverse of the 
alternative hypothesis (H1) which is 
what you want to show.  

This is called the sampling 
distribution of the statistic under the 
null hypothesis

This is called rejecting the null 
hypothesis. 

This p value is the probability of 
incorrectly rejecting H0



Useful terms

1.      …

2.      …

3.    Find the distribution of ∆ under 
the assumption KOSO = 
KOSO*

4.    Use this distribution to find the 
probability of ∆ = 0.21 given 
H0

5. …

6. …

…the sampling distribution of the statistic.  
Its standard deviation is called the 
standard error

Statistical tests transform statistics like ∆
into standard error (s.e.) units

It's easy to find the region of a distribution 
bounded by k standard error units

E.g., 1% of the normal (Gaussian) 
distribution lies above 1.96 s.e. units.



Conclusion
• Clarify your claim before you start.
• Make sure your experiment is capable of 

evaluating your claim (run pilots).
• Explore beneath the results to understand 

what is going on.
• Design statistical analysis to control 

unwanted variance.
• Support your claim by showing null 

hypothesis is very unlikely.
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