LX — Layered Architectures for XML-based Data
Interchange

Part 1: Previous Research and Track Record

Introduction

There is evidently a significant convergence be-
tween two important technologies: markup for
the World Wide Web (XML, the Extensible
Markup Language (see http://www.w3.org/
TR/REC-xml). The Internet is just beginning to
make an impact on the database world, and the
fact that data as much as if not more so than
documents will use XML to travel the Internet
is just beginning to significantly influence the
design and development of the XML family of
standards.

Data means not just data in standard database
formats (i.e. accessible via SQL) but also data
in record structures and object hierarchies in
application programs, each with idiosyncratic
dump formats for archiving and interchange.
The value of an XML representation for data
of both kinds, both internally (for archiving and
interchange) and externally (if you can show the
world your data in the form of XML, they’ll
buy it) is becoming apparent in many commer-
cial sectors (e-commerce not the least). The
problem the work proposed here seeks to ad-
dress is that a myriad of more or less ad-hoc
mechanisms are springing up to manage the
translation from internal data representations
to XML and back again. We propose to use
emerging international standards, in particu-
lar the W3C’s XSLT and XML Schema (Clark
1999, Thompson et al. 2000), to provide a uni-
form, standards-based solution. (Strictly speak-
ing the W3C (The World Wide Web Consor-
tium, a membership organisation responsible for
managing the higher levels of Internet use) does
not promulgate standards, but rather Recom-
mendations, because it is not an official inter-
national body, but its recommendations are the

closest to standards there are for the areas they
cover.)

The proposed work starts with the most
tractable aspects of this problem to prototype a
solution architecture, and progresses to address
a number of more complex aspects, bringing to
bear a number of strands of existing research
and development work.

Previous Research

The Language Technology Group and the pro-
poser have been involved with relevant research
into markup, markup architectures and markup
application architectures for over 10 years.

We published the first freely available research
corpus annotated using the TEI Guidelines for
SGML markup of such material (Burnard and
Sperberg-McQueen 1990, Bard et al. 1992), de-
veloped a simplified version of SGML for use in
language processing and distributed a free API
and toolkit based on this (LTNSL 1996). Nor-
malised SGML, as we called this simplification,
was an important input into the design process
for XML itself, which the proposer participated
in as one of the original members of what was
initially called the SGML Working Group of the
W3C in 1997.

The LTG migrated its normalised SGML tools
to XML and started developing a suite of XML-
aware tools for use in data-intensive applica-
tions (for an overview, see McKelvie et al. 1998).
The core of these tools is LT XML (Thompson
et al. 1998), an integrated set of XML tools and
a developers’ tool-kit, including a C-based API,
running on UNIX and WIN32 platforms. LT XML
has now been licenced to over 4500 individual
worldwide in academic and industrial environ-

ments. The core validating XML parser at the
heart of that system, called RXP (Tobin 1999),
is widely acknowledged as one of the two best
high-performance validating parsers available.

The proposer has been involved with the core
XML technologies of the proposed work, XSLT
and XML Schema (see below) from the very
start, having collaborated in the initial research
and design work (Adler et al. 1997) which led
to the formation of the XSL Working Group
which wrote the XSLT Recommendation, and
similarly published an early exposition of the
need for what became XML Schema (Thomp-
son 1998) which included a number of key de-

sign ideas now incorporated in the XML Schema
draft recommendation (Thompson et al. 2000)
of which he is a co-editor.

Support for our work on XML and related
markup technologies has come from EPSRC
(project NSCOPE, GR/L29125, with the pro-
poser as Principal Investigator and the named
RA as major contributor), the European Union
(Project MATE, on a Multilevel Annotation
Tool) and the ESRC (the HCRC Core Grant,
1989-1999). Our work in this area has also at-
tracted industrial support, with direct grants
from Sun Microsystems and Microsoft.

Part 2: Proposed Research and its Context

1. Technical Background

Layering and the Cambridge Commu-
niqué

A preliminary outline of the place of XML in
a world wide web of data is documented in the
Cambridge Communiqué (Swick & Thompson
1999). We observe that XML initially shared
a design philosophy with SGML, focussed on a
simple data model for a tree-structured view of
documents and a flexible linearisation or trans-
fer syntax for documents represented using that
model. The majority of energy going in to
XML has, however, been sustained by the em-
pirical observation that tree-structured docu-
ments are a pretty good transfer syntax for just
about anything, and that by converting from
application data models to the document data
model, the utility and ubiquity of XML become
available for moving application data around
and making it available outside its original pro-
ducer/consumer community. The Cambridge
Communiqué says it this way:

1. XML has defined a transfer syntax for
tree-structured documents;

2. Many data-oriented applications are be-
ing defined which build their own data
structures on top of an XML document
layer, effectively using XML documents as
a transfer mechanism for structured data.

It goes on to recommend that XML Schema
make provision for facilitating this layered ap-
proach.

The layered approach can be seen as comple-
menting a more constrained approach to data
interchange based on abstract APIs and Remote
Procedural Call, e.g. COM, CORBA, IDL.

XML Schema

XML Schema is a W3C initiative to provide a
replacement for the existing document struc-
ture definition mechanism of XML, known as
the Document Type Definition (or DTD), using
XML markup itself instead of the idiosyncratic
DTD notation. One of its principal official re-
quirements was the provision of state-of-the-art

mechanisms for definition structuring, composi-
tion and reuse, and these mechanisms in turn
are intended to be modelled on, and a good
impedance match with, existing structure defi-
nition systems from other branches of computer
science, including programming languages and
database systems.

As the above discussion of the Cambridge Com-
muniqué suggested, the design of XML Schema
makes explicit provision for annotation of the
constituent parts from which a schema, that is
a formal definition notated in XML of the struc-
ture of a family of XML documents, is com-
posed.

XSLT

XSLT (Extensible Stylesheet Language: Trans-
formations) is a W3C Recommendation, one
of two components of a mechanism for asso-
ciating information about intended appearance
with XML documents. The ‘Transformation’
part of XSLT is what is of interest here: it pro-
vides a very powerful functional language, using
pattern-directed invocation, to specify a map-
ping from one family of structured documents
into another.

Although XSLT’s primary purpose if for trans-
forming from XML to XML or HTML, it also
makes provision for transforming XML into ar-
bitrary application-internal structures, via an
extension mechanism.

Semi-structured Data, Data Guides and
Schema Derivation

Semi-structured data is the name given to a
relatively recent attempt to bridge the gap be-
tween relational and object-oriented approaches
to database design. It has been suggested
that it might also help bridge the gap between
databases and XML (Abiteboul et al. 1999).
In the first instance it is a way of abstracting
away from implementation detail in the pre-
sentation of database contents, but in at least
some cases it supports step-wise refinement via
Data Guides ([LORE ?7]), which can be seen
as a summary of the access paths available
with respect to a particular collection of semi-
structured data to a class-based schema which

is much closer to an Entity-Relation [Chen ?77]
data model, related via simulation to the orig-
inal dataset, but also standing as a hypothesis
about its underlying structure.

2. Programme and Methodology
2.1 Overall goals

Although the overall shape of the desired ar-
chitecture for data publishing and interchange
via XML is clear, and many more or less ad
hoc efforts are already under way to instanti-
ate it for particular application/programming
language pairs (see e.g. Reinhold (1999), Box
(2000)), what is really wanted is support for a
declarative specification of the relation between
an application data model and an XML Schema,
each independently defined. In concrete terms
this support should yield implementations of
language-independent marshalling and unmar-
shalling, that is, bi-directional conversion be-
tween XML instance and application data.
Some aspects of a solution are already clear in
outline — others will require exploration of pos-
sibilities for application of research results from
other related disciplines.

We see the proposed research as necessary
preparation for standardisation work in this
area: Member companies of the W3C have re-
cently requested that it undertake work on stan-
dardising XML protocols (Larry Masinter, per-
sonal communication), while at the same time
clarifying that XML-encoded RPC is not what
is required: such a move would leave the XML-
structure to/from application structure corre-
spondence issue to be solved.

The following questions each need to be ad-
dressed to arrive at the desired architecture:

e Is the mapping to be specified by annota-
tions within an individual XML Schema
document, e.g. by adding mapping infor-
mation to each element and attribute dec-
laration? Alternatively, should the map-
ping be specified externally, possibly ex-
ploiting XSLT?

e The directionality aspect of the mecha-
nism deserves special consideration: Both
XML Schema and XSLT are by construc-
tion good matches for the XML — appli-
cation (unmarshalling) direction. What

kind of conditions must be imposed on
either type of solution to guarantee re-
versibility, that is, the application —
XML (marshalling) direction? Again,
XML Schema and XSLT both imply
a control structure from which an im-
plementation of unmarshalling naturally
emerges. What control structure would
be required for marshalling?

e What are the tradeoffs between specify-
ing the application side of the mapping
in implementation-level terms (e.g. Java
class instance/variable or relational ta-
ble/row) versus specifying it in more ab-
stract terms (e.g. Entity-Relation, EX-
PRESS (ref??) or UML [UML ?777]?

e Would specifying an abstract mapping
in the schema, and concrete language-
specific bindings from abstract model
to implementation independently of the
schema, give the right modularity?

e When only one or the other model is spec-
ified in advance (i.e. XML Schema or ap-
plication data model), can we automati-
cally derive the other? If so, what con-
ventions should be used in doing so?

e Does the intermediate position between
XML and traditional databases occupied
by semi-structured data offer any leverage
for the solution to this problem?

e What constraints, if any, are required to
allow an implementation of unmarshalling
to work in a streaming fashion, i.e. to
build application structures as an XML
document is processed, without build-
ing a complete internal representation of
the document before application structure
construction can begin?

The work proposed here aims at answering these
questions, structuring the effort in terms of
three broad goals:

e Design a declarative approach based as far
as possible on existing public standards
which supports automatic generation of
implementation-language-appropriate un-
marshalling of XML documents into ap-
plication data structures;

e Extend the above to support marshalling
in a congruent way, i.e. the construction
of XML documents from application data
structures;

e Explore approaches to (semi-
)automatically generating appropriately
annotated XML schemas from schemas
expressed in one or more data modelling
languages.

2.2 Deliverables and Work Packages

Work Package 1:Identification and De-
scription of Test Cases

We will need a number of independently de-
signed document types, application data mod-
els, and pairs of the two to use in the other
work of the project. Examples will be sought
from existing document-oriented DTDs, such as
the XHTML DTD (XHTML 2000), from ex-
isting data-oriented DTDs, such as the OAG
e-commerce transaction DTDs (OAG 77) in
addition to the schema, DTD and data model
for XML Schema itself, which we have already
worked with in the unmarshalling direction.
Starting from the application data end, possible
examples include the CEN??? patient record
model (in UML, (CEN? ?7), the Dublin Core
bibliographic metadata model (in RDF) and
the teachers-courses-students database model
(Entity-Relation) developed jointly with Mi-
crosoft (Al ?7). The deliverables will include
not only an inventory of designs, but at least
some example documents in each case, as well
as schemas or partial schemas, which will have
to be created in many cases.

Work Package 2: Schema Annotation

XML Schema provides for arbitrary annotations
to be added to the declarations and definitions
(called schema components) which together de-
fine a document type, that is, a set of documents
with a common structure and common pur-
pose. The deliverable from this work package
is a design for a set of annotations which spec-
ify the correspondence between schema compo-
nents and application data model components.
This breaks down into two tasks:

a) design the syntax of the annotation mech-
anism, that is, whether to use elements or at-
tributes, which aspect of schema extensibility to
exploit, etc.;

b) determine what vocabularies are needed to

identify the different kinds of application model
components, e.g. entity, relation, attribute
etc. for Entity-Relation, or class instance,
instance variable, list for an O-O program-
ming language.

Work Package 3: Language-specific Un-
marshalling: Direct prototype

This workpackage is the proof of concept for
the architecture we have in mind, developing a
prototype for the simplest part of the overall
design, and testing it on real examples.

Task 3.1: Design and Construction

The deliverable of this workpackage is an im-
plementation of a compiler from XML Schemas
containing language-specific annotations as de-
signed in WP 2 above into an XSLT stylesheet
for unmarshalling, using the XSLT element ex-
tension mechanism as implemented in our ex-
isting streaming XSLT processor. Three tasks
here:

a) design one set of language-specific extension
elements;

b) Implement the schema — stylesheet com-
piler, specialised to one language-specific vocab-
ulary and targeting those extension elements;
¢) implement the extension classes in the con-
text of an XSLT implementation. The choice of
implementation will determine the choice of lan-
guage: C if we use our own streaming XSLT pro-
cessor, Java if we use XT, James Clark’s public
domain XSLT processor.

Task 3.2: Deployment and Testing

This implementation gives us the basis for ac-
tually annotating schemas and unmarshalling
from real document instances to test the via-
bility of our approach, and explore its appropri-
ateness to the three broad use-cases as outlined
above in Workpackage 1. The deliverables will
be annotated versions of schemas for a number
of the test cases delivered by WP 1 above, along
with improved versions of the deliverables from
3.1

Work Package 4: From Low- to High-level
Annotation

To achieve our goal of appropriate modulari-
sation, we need to elaborate the first deliver-
able from workpackage 3 above (the schema-
annotation to stylesheet compiler) so that
instead of implementation-language-dependent
annotation vocabularies which can be com-

piled directly to application-structure-building
stylesheets, we can annotate a schema in a
domain-appropriate high-level modelling lan-
guage such as Entity-Relation, EXPRESS or
UML, and then parameterise the compilation
process by a further specification of the cor-
respondence between terms in that high-level
model and implementation terms in a partic-
ular operating environment. The deliverables
are thus parallel to those of Tasks 3.1 and 3.2
above, but based on high-level annotation and
parameterised compilation.

Work Package 5: Marshalling

All the above has focussed on unmarshalling
from XML documents into application struc-
tures. This workpackage turns to the question
of marshalling application structures into XML
documents. There are two different approaches
to be explored here. The first is based on com-
piling the annotations of workpackage 3 into
e.g. methods for the classes involved to achieve
marshalling functionality. We are not aware
of any language-independent precedent for this,
in cases where the document structure was de-
signed prior to or independently from the appli-
cation data model.

Ambiguity and overloading are the obvious
stumbling blocks. The alternative, although
more speculative, also offers more if it is suc-
cessful. There is some literature in areas of for-
mal language theory applied to layout (e.g. Feng
1993) and applied to translation (e.g. Yellin
1988) which explores the annotation of one of a
pair of grammars, either context-free or finite-
state, with information about its relation to the
other. The work may offer help in at least iden-
tifying properties of document schemas (which
are isomorphic to context-free grammars) and
application data models (which are relatable to
grammars in most cases) which would be nec-
essary to allow the automatic creation of mar-
shalling understood as a similar sort of trans-
formation as in the unmarshalling case.

Work Package 6: Second-order compila-
tion

When an application data model exists, but no
document definition work has been done to sup-
port XML receipt or delivery, automatic gener-
ation of an XML schema complete with anno-
tation would fit well into the overall picture.

Task 6.1 Design Exploration In principle it

would be best to start at the modelling lan-
guage level, then map from UML or EXPRESS
or RDF schema to 1) an XML Schema; 2)
the necessary schema annotations. The major
stumbling block that we envisage is when there
are re-entrancies or circularities in the applica-
tion model: when to choose foreign keys/ID-
IDREF /linking vs. embedding. The work on
dataguides introduced above offers a promis-
ing place to start, going from data — semi-
structured data — data guide — schema. How
to generate the appropriate mapping annota-
tions as part of this process is an open question.

Task 6.2: Implement and Evaluate

For evaluation, we can take the second-order
compiler, apply it to a model for which we ac-
tually do have an existing schema, e.g. XML
Schema itself, and compare results.

3. Management

The day-to-day management of the project will
be the responsibility of the Principal Investiga-
tor, Henry Thompson. He has considerable ex-
perience in the management of local, national
and international R&D projects.

4. Dissemination and exploitation

A version of the software produced will be doc-
umented and made available to other labs for
R&D purposes on the basis of a non-exclusive
licence. The Language Technology Group has
considerable experience in packaging, docu-
menting, advertising and licencing language en-
gineering software (see http://www.ltg.ed.
ac.uk/software).

The overall architecture and the way in which
the overall goals set out above are achieved will
be presented at appropriate conferences and de-
scribed in scholarly papers.

should we promise another dissemination
workshop?

5. Relevance to beneficiaries

Even a partially successful outcome of the
proposed work would be of major benefit to
commercial and non-commercial users of the
World Wide Web: moving away from an ad-
hoc scripting-based approach to the interface

between application data and XML to a declar-
ative standards-based approach is both more ro-
bust and more cost-effective.

6. Justification of resources

Personpower.
One researcher at the level of RA1 is requested.
The researcher must have a wide range of skills,

In addition, 25% of Richard Tobin XXX

Computing support is included in the cost-
ings to cover the skilled manpower required for
the continuing provision of a smoothly running
distributed computing infrastructure, including
printing, mail, news, backup and archiving fa-
cilities, and for the day to day management of
project specific hardware and systems software.

Equipment and computing consumables.
The work will be data-intensive, and in our

experience a dedicated workstation with large-
capacity storage media directly attached is best
suited for this type of development work. To
this end, the cost of a Sun Workstation has been
added to the budget.

Consumables and annual connection charges
have been included in the budget. These are
for the new machine as well as for machines al-
ready in place which will also be used during
the project. These costs have been calculated
at standard departmental rates. They cover, in-
ter alia, laser printing, computer paper, disks,
cartridges, network costs, and maintenance of
shared file and print servers.

Travel.

The travel money requested will cover dissemi-
nation. In particular, we intend to present re-
sults at a few major conferences such as XTech
and XML Europe (annual XML conferences and
no idea — we need one CS-type conference
for credibility — VLDB?

Part 3: Diagrammatic workplan

see email

References

S. Adler, Henry Thompson and 9 others, A
Proposal for XSL, W3C Note, W3C, Cambridge
MA. Also available as
http://www.w3.org/TR/NOTE-XSL.html.
Abiteboul, Buneman and Suciu, 7777

E. Bard et al. (1992) The HCRC Map Task
Corpus. In Language and Speech 34 (1992) 4,
pp351-366.

James Clark, ed., XSL Transformations (XSLT),
W3C Recommendation, W3C, Cambridge, MA.
Also available as http://www.w3.org/TR/xslt.
Don Box 2000

Chen 777

Entity-Relation model

An Feng, Toshiro Wakayama: ”SIMON: A
Grammar-based Transformation System for
Structured Documents,” Electronic Publishing

6(4): 361-372 (1993)

Mark Reinhold (1999): JSR-000031 XML Data
Binding Specification. Available at
http://java.sun.com/aboutJava/
communityprocess/jsr/jsr_031_xmld.html

Ralph Swick and Henry Thompson eds. (1999):
The Cambridge Communiqué. W3C, Cambridge,
Ma. Also available as
http://www.w3.org/TR/schema-arch

Henry Thompson et al. (2000): XML Schema Part
1: Structures, W3C, Cambridge, MA. Also
available as http://www.w3.org/TR/xmlschema-1/
XML Query

Daniel M. Yellin (1998): Attribute Grammar
Inversion and Source-To-Source Translation.
Springer-Verlag, Berlin, New York, 1988.

