Proposal to the EPSRC

Vectorised XML?

Peter Buneman
Division of Informatics
University of Edinburgh

June 12, 2002

Contents

Part 1: Previous experience and track record
Part 2: Description of the Proposed Research and its Context
Part 3: Work plan

References



Peter Buneman: Vectorised XML?

PART 1: Previous Research and Track where data has come from. With the proliferation

Record

Peter Buneman has recently joined the Univer-
sity of Edinburgh as Professor of Database Sys-
tems, a topic in which he has worked for the past
20 years or more, mostly at the University of Penn-
sylvania. In a previous incarnation he worked at
Edinburgh on a number of topics related to Cogni-
tive Science and also on the mathematics of phy-
logeny. His work in databases covers a number
of areas including query languages, data models,
data integration, partial information, semistruc-
tured data and data provenance. He has also
worked on a variety of issues in scientific databases,
He has served on the programme committees for
most major database conferences, he has been pro-
gramme chair of several of them including ACM
Sigmod, ACM Pods and ICDT. He has served on
the editorial board of a number of database jour-
nals and is currently an associate editor for ACM
Transactions on Database Systems. He is a Fel-
low of the ACM and a recipient of a Royal Society
Wolfson Merit Award.

Those aspects of Buneman’s work connected

with this proposal are briefly described below. They

are query languages, semistructured data and data
archiving.

In the early 1990’s Buneman and his colleagues
worked on the principles of programming with col-
lection types. A relational table is a set of tu-
ples whose components are all taken from some
atomic domain. The challenge was to find the
“right” extension to relational algebra that would
provide for new collection types other than sets
(lists and multisets) and would relax the atomic
value constraint so that entries in tables could,
for example, be other tables. They were able to
show that a language based on the categorical no-
tion of a monad provided the generalisation that
was needed. That it was the “right” generalisa-
tion was established through a series of complexity
and conservativity results. A practical language
was implemented and used in various bioinfor-
matic data integration problems. It has also been
used as a core language for a typed XML algebra.

Following this Buneman worked on semistruc-
tured data, laying down a data model, a query lan-
guage and optimisation techniques for this form of
untyped data. He is co-author of a book on this
topic. He has also worked on various forms of
constraint for semistructured data including path
constraints, partial type systems for semistruc-
tured data, and key constraints for XML.

Buneman’s most recent work has focused on
the problem of data provenance — understanding

of databases on the Web, the provenance of data is
becoming increasingly difficult to record or even to
characterise. In bioinformatics, for example, there
are literally hundreds of public databases. Most
of these are not source data: their contents have
been extracted from other databases by a process
of filtering, transforming, and manual correction
and annotation. Thus, describing the provenance
of some piece of data is a complex issue. These
”curated” databases have enormous added value,
yet they usually fail to keep an adequate descrip-
tion of the provenance of the data they contain.

A key requirement in recording provenance is
the keeping of archives of all states of a database.
Archiving is particularly important for scientific
databases, where the data evolves, but — in the
interests of accuracy and verifiability of findings
derived from the data — it is important to keep
all previous versions of the data. Buneman and
colleagues have developed a technique based on
the notion of timestamps whereby an element ap-
pearing in multiple versions of the database is
stored only once along with a compact descrip-
tion of versions in which it appears. A prototype
has been developed with encouraging results. For
two widely used databases in bioinformatics, one
can archive as often as one wants for a whole year,
and the size of the archive is less than 15% larger
than the size of any one of the versions. Moreover
an individual version can be efficiently extracted.
Querying an archive is one of the goals of this pro-
posal.

Further information on these projects and pub-
lications see http://db.cis.upenn.edu
The Division of Informatics of the University
of Edinburgh is one of the top-ranked computer
science departments in the UK. The Division is
committed to building up a world-class group in
databases, and it is ideally situated to do this.

e Two additional posts (up to reader level) in
databases have been allocated. One of these
is expected to be filled by the end of the
year.

e Martin Grohe, a world-class researcher in fi-
nite model theory has recently joined the
division. Grohe has made several contribu-
tions to the principles of databases. He has
been an invited speaker at ACM Principles
of Database Systems (PODS).

e Kousha Etessami will also join the Division
in the coming months. He has also con-
tributed to database theory.

e Christoph Koch (see below) will be joining
as a post-doctoral student in July.



Peter Buneman: Vectorised XML?

e Edinburgh is host to the National e-Science
Center (NeSC), directed by Malcolm Atkin-
son, who has collaborated with Buneman.
One of the main activities of the Center is
to promote interest in Scientific Databases.

Through NeSC, Buneman has already formed
contacts with people — some of them involved
in this proposal — working in biological and
astronomical databases. There is a rapidly
growing group in bioinformatics at Edinburgh.

Within Edinburgh there are other possibili-
ties for collaboration, notably Werner Nutt
at Heriot Watt who is a reader in Database
Systems and Richard Baldock at the West-
ern General MRC who has led the Mouse
Atlas project.

The purpose of this grant is to support a post-
doc and general research requirements (travel and
equipment). Christoph Koch, who is arriving in
Edinburgh in July 2002, is the primary candidate
for the postdoc. Short-term funds are available
for this position, but longer-term funding will be
needed. Koch has applied to other funding agen-
cies, and if his applications are successful, the
funds requested in this proposal would be used
for a second postdoctoral researcher or a research
assistant.

Christoph Koch received his MS and PhD de-
grees in Computer Science from TU Vienna. He
has several years of experience in the IT industry
and most recently, while doing his PhD research
on the integration of scientific databases, had a
three years stay at the European Organisation
for Nuclear Research (CERN), Geneva, Switzer-
land. He has written about 20 publications on
database and Artificial Intelligence topics and co-
authored work that received the best paper award
at PODS, the most prestigious database theory
conference, in 2002. His current research inter-
ests are on database theory, particularly on data
extraction and integration, XML and Web data
management, and scientific databases.

Named as CO-PI and collaborator on this pro-
posal are J.D. Armstrong and Robert Mann. Arm-
strong has been involved in the development of
database systems and algorithms for handling DNA

Currently held grants

All of Buneman’s current grants are all held in the
USA at the University of Pennsylvania (Penn).
He is active and former PI on two grants “Data
Provenance” (Digital Libraries II, funded by NSF,
DARPA, NLM, LoC, NEH, NASA) $500k, and
“A Deterministic Model for Semistructured Data”
(NSF) $300k. He is a co-PI on a number of grants
involving scientific databases including a grant from
Glaxo Smith Kline on data integration (formerly
PI, approx $1m) and an NSF IT grant for linguis-
tic databases, the TalkBank project held at Penn
and CMU (approx $4m.)

Budget Justification

The proposal is to support one post-doc and tarvel
and equipment for both the post-doc and the in-
vestigators and collaborators on this proposal. The
funding for the post-doc is requested at a higher
rate commensurate with the academic standing
and industrial experience of Christoph Koch (see
above) who has spent some time in industry and
scientific establishments and has already been work-
ing for some time as a post-doc.

Equipment and Travel For experimental work,
especially with astronomical data, a machine with
substantial main memory will be required. How-
ever it is anticipated that such a machine will
be available through independent funds already
avaailable to provide infrastructure in support if
e-science. The equipment requested here is there-
fore the standard for any proposal in computer
science. The travel is for participation by the PI,
Co-PI, collaborators and supported postdoc in the
major database conferences, most of which are in
Europe or the USA, but only infrequently in the
UK. These include ACM SIGMOD/PODS (USA)
VLDB (Europe/USA) ICDT (Europe) ICDE (Eu-
rope/USA) SSDBM (Europe/USA) EDBT (Eu-
rope.)

sequence information, mutation data and customised

laboratory information management systems. Arm-
strong was recently been appointed to the Division
of Informatics at the University of Edinburgh and
teaches Algorithms and Biological Data. Mann is
a postdoctoral researcher at the Edinburgh Uni-
versity Institute for Astronomy. His work involves
mining astronomical data, which contains large
datasets represented in XML.



Peter Buneman: Vectorised XML?

PART 2: Description of the Proposed

Research and its Context

1 Introduction

The received wisdom on storing tables in a rela-
tional database is to store each tuple contiguously
in secondary storage. A simple alternative is to
store the columns contiguously, so that a table
is represented as a set of vectors all of the same
length. The advantage of vectorisation is that
queries involving a small number of attributes can
be evaluated efficiently and that it is often possi-
ble to do more main-memory query processing.
What is asked here is can we “vectorise” XML?
This would provide similar advantages for storage
and query evaluation, especially for archives and
large bodies scientific data, much of which is now
transmitted in XML.

2 Background

The widely accepted storage technique for rela-
tional databases is to store each tuple contigu-
ously. An alternative, which is almost as old as
relational databases [3] is vertical partitioning in
which one stores the columns contiguously. The
benefit is that queries that only involve a small
number of columns require less i/o. Moreover,
there are dramatic performance improvements to
be made if the columns can be stored and manip-
ulated as vectors in main memory. The idea has
re-emerged in various places: in [9, 4] for object-
oriented databases and in [1] in which it is used to
speed up transfer between main memory caches.
It has also been used commercially in Sybase IQ
and recently by Aleri Inc. where it is combined
with vector processing language technology and
has been successfully used in a number of financial
database applications to support data integration
and OLAP. There are, of course, drawbacks to
the idea. Updates, especially deletions, are pro-
hibitively expensive if naively implemented. Also,
there is a sense in which vertical partitioning is
already widely used: an index typically stores in-
formation about a small subset of columns con-
tiguously. We shall use the term “vectorising” for
that form of vertical partitioning which stores the
columns of a table as vectors and, in particular,
preserves the order in each column.

At first sight, vectorising XML, which is not
tabular in nature and can be highly irregular in
structure, does not make sense. But there is some
recent work by Liefke and Suciu [17] that demon-
strates the feasibility of the idea for the purpose

of compression. What is proposed here it to use
this decomposition and variations on it for the
purpose of querying and programming with XML
data. There are a number of potential benefits
from such a storage technique:

e It is a robust form of native storage for XML
that supports programming interfaces and
efficient evaluation of a wide variety of basic
queries.

e It can co-exist with other indexing and stor-
age techniques.

e The relatively high cost of updates in vec-
torised databases is less important for XML
which one does not usually think of as a stor-
age model for databases with high transac-
tion rates. It is certainly the case that sci-
entific databases are “write-mostly”.

e It preserves order. Many existing storage
models and query languages “lose” the order
in an XML document, however XML is in-
trinsically a representation for ordered data
and order is important in many scientific ap-
plications [18].

In case the advantages sound too good to be
true, the author should strike a note of caution.
There are a number of competing proprietary and
academic storage schemes for XML, and it is not
clear whether one could win out with a new one
funded on a small budget. Nevertheless, the idea
of vectorisation brings up enough interesting chal-
lenges that it is very likely that some useful re-
search and techniques will emerge from its study.
Our starting point is briefly to describe what we
mean by vectorising XML.

3 The Liefke-Suciu decompo-
sition

XML is a form of semistructured data that rep-
resents a middle-ground between structured text
and databases. That it will serve as a univer-
sal medium for data exchange is not in doubt.
Whether we shall store large XML databases (as
opposed to using conventional databases and us-
ing XML just for data exchange) depends on our
ability to find XML storage models and query lan-
guages that are matched to those models. For
example, if XML algebra [12] is to perform as ef-
fectively as relational algebra, we shall need a cor-
responding storage model and implementations of
the fundamental operations.

XML is a textual representation of a labeled
tree in which the internal nodes are labeled with



Peter Buneman: Vectorised XML?

(recipe-book)
(recipe)
{contributor) Annie (/contributor)
{name) Salsa (/name)
{comment)
Peter (i) loves (/i) this stuff
(/comment)
(ingredient)
{name) tomatoes {/name) {(qty) 1kg {/qty)
(/ingredient)
(ingredient)
{name) onions (/name) {qty) 200g (/qty)
{/ingredient)

{/recipe)
recipe
‘ name ‘ ‘ contributor ‘ ‘ comment ‘ ‘ ingredient ‘ ‘ ingredient ‘

Salsa) (Annie

Goo) [1] o) [rame] [ao] [rame] [

Figure 1: Some XML and its representation as a
tree

tags (corresponding roughly to table and attribute
names) and terminal nodes contain text (corre-
sponding to data).

The Liefke-Suciu (LS) decomposition takes an
XML file (Figure 1) and produces a collection of
output files (Figure 2). These consist of (a) a tag
map file that encodes the XML tags, (b) a collec-
tion of data files that contain the text at the termi-
nal nodes of the tree, and (c) a skeleton file that
describes the tree structure of the XML source.
The XML tags are encoded as integers simply to
save space. The data files are named by the paths
at which the data is to be found and are shown,
for illustration, with each segment of text on a
separate line. The skeleton file is a compact de-
scription of the XML tree without the character
data. It can be readily understood as a left-first or
document-order walk round the tree. Each time
a tagged node is encountered we place its code in
the skeleton file. If we encounter a character data
node, we put a “#” in the skeleton file and we
write the character data into a file whose name
is the current path to that node. When we leave
a tag node for the last time we put a “+” in the
skeleton file.

This does not complete the description of the
LS technique, which was designed for data com-
pression. Paths may be grouped into containers
(e.g. all paths ending in name) and the data files
correspond to containers. The containers are then
individually compressed using a variety of com-
pression algorithms. We have also swept under

recipe—-book 1 Salsa Annie Peter
recipe 2 1/2/3 1/2/4 this stuff
name 3 1/2/5
contributor 4

comment 5 tomatoes 1kg

i 6 onions 200g
ingredient 7 1/2/5/6 121713 1/2/7/8
qty 8
() Thetag map (b) The datafiles

| 1234+44+5H#6#+ 44734484+ + T3#+BH+++ |
() The skeleton

Figure 2: Files produced by the Liefke-Suciu de-
composition

the carpet various details such as attributes, enti-
ties and white space.

The analogy with vectorisation should be clear.
The “vectors” or columns correspond to the data
files. The difference is that we need to carry the
skeleton in order to reconstruct the original XML
or to do any processing with it. What we consider
in the rest of this proposal paper is how we could
make the LS decomposition — or variations on it
— to make querying and programming XML more
efficient.

4 Uses of vectorisation

4.1 SAX-style parsing

SAX (A simple API for XML) [21] is the basic
parser for XML. It performs a single traversal of
the XML source and as it does so calls proce-
dures such as StartElement when an opening tag
is encountered, EndElement, for a closing tag, and
Characters when it is reading character data. Even
before we consider main-memory processing, we
can use the LS decomposition to implement effi-
cient SAX traversals.

A SAX interface It is easy to construct a SAX
interface that works directly of the LS decompo-
sition. In fact this is roughly what one does if one
wants to reconstruct the original XML. The au-
thor wrote a naive (non-validating) SAX interface
in Python and was able to obtain a five-fold in-
crease in speed over a Python standard [20] parser
on a program that simply traversed the data and
reconstructed the XML file. This is really not sur-
prising, since most of the work was done by the
standard parser when the XML was decomposed,
and the data is being stored in “parsed” form.
Given this, and the benefits of LS compression, a
full SAX interface to the compressed data seems
like a good idea.



Peter Buneman: Vectorised XML?

Source | Lazy | Skeleton

Baseball 672 106 85
Shakespeare 7646 561 539

Uncompressed

Source | Lazy | Skeleton

Baseball 66 11 1.3
Shakespeare 2139 40 31.0

Compressed

Figure 3: File for some simple queries (sizes in kb)

Lazy SAX parsing An almost immediate con-
sequence of LS compression is that one can build
a “lazy” SAX interface!. Rather than opening all
the data files when the interface is initialised, as
the traversal proceeds one keeps a count, for each
data file, of how many items should have been
read from each data file. It is only when the user
program wants some data that the appropriate file
is opened and the reader “catches up” to produce
that data. Thus files that contain data that is
never needed are never read. For example (Figure
1) a query that asks for the names of the recipes
that contain onions will only read the data files
1/2/4 and 1/2/7/4. We noted in the introduc-
tion that vectorisation is particularly useful for
“fat” tables. XML has a hierarchical structure,
which means that many-one relationships can be
stored in a single hierarchy; also, in forcing data
into a single hierarchy, designers often resort to
un-normalised representations. What this means
is that XML documents are typically very “fat”,
and the benefits of vectorisation are exceptional.

As examples of the benefits of this technique
the author tried two simple experiments with XML
data available on the web. The first was to find
the names and teams of all players with an earned
run average greater than 8.0 from baseball statis-
tics [14]; the second was to find the titles of all
Shakespeare plays in which Falstaff appears as a
player. The Shakespeare XML was taken from
[5], and all the plays were run together as a single
XML document.

The results are shown in Figure 3, which shows
the sizes of the source data, the total size of the
files used by “lazy” SAX parsing and the size of
the skeleton file. While there is a substantial re-
duction in i/o, the skeleton accounts for most of
the i/o used by lazy parsing. On the “compressed”
side we see the corresponding file sizes when all

1 Because of the way the SAX interface is specified, with-
out playing some extremely dirty ticks, one cannot build
a lazy interface that conforms exactly to the specification,
but the modification is extremely small

files are compressed using the standard gzip pro-
gram [23]. Here the skeleton file reduces dispro-
portionally. This is partly due to the relatively
crude representation used in the author’s imple-
mentation (2 bytes for an opening tag, one byte
for a closing tag, with the “presence of character
data flag” being absorbed into the preceding tag
byte(s).) However, a more important reason is the
regularity of these files. This is something we shall
discuss later. The Shakespeare example might
be regarded as unfair because the query does not
mention the text of play (the spoken lines) which
accounts for 60% of the total source data. How-
ever, by analogy with scientific databases — treat-
ing the text as “data” and the annotations as
“metadata” — this query is typical of exploratory
queries that do not mention the “data”.

As further evidence that the principle works,
the figures in table 4 were very recently obtained
by Byron Choi, a research student at the uni-
versity of Pennsylvania. They are taken against
an XML version of the Eupoean Molecular Bi-
ology Database and compare XPath queries per-
formed by Flat file (FF) Vectorising (Vect) Edge
Table(ET) and Inlining (Inl). The last two [13, 1]
are relational storage techniques for XML imple-
mented in DB2. The queries were 1. / — retrieve
the whole file in XML,

2. /Entries/Entry/Identification and

3. /Entries/Entry/Identification/EntryName,
all “hand coded”. The skeleton (s) was 16K and
the tag map (i) was negligible. Only queries 2 and
3 had “tabular” answers and were encoded as re-
lational queries. Reconstruction of XML — needed
for 1 — is not expressible in relational algebra and
was not implemented. It should be stressed that
these results are preliminary. All of them will ben-
efit from indexing and tuning.

4.2 Indexing

The LS decomposition invites numerous possibili-
ties for indexing. It is clear that keeping pointers
(byte offsets) from the data files into the skele-
ton file and wvice versa may reduce i/o in finding,
say, a data element associated with a node in the
skeleton. At the same time, insertion of point-
ers will enlarge the size of the files (especially the
skeleton) so the benefits of this are unclear — es-
pecially when we may want to keep a file in main
memory. A middle ground is to introduce syn-
chronisation marks into the file. Such a mark is a
number that is placed somewhere in the skeleton,
and the same number is placed at corresponding
positions in the data files. A main-memory array
is kept that gives the offsets of each synchronisa-
tion mark in the skeleton and each data file.



Peter Buneman: Vectorised XML?

Now, in almost any kind of searching or in-
dexing we establish a location in one of the data
files. We scan backwards for a synchronisation
mark, use the synchronisation table to index into
the corresponding marks in the skeleton and other
needed data files, and scan forwards. To do this
we need to augment either the skeleton or the syn-
chronisation table with enough information to de-
termine the path at each mark. It is up to us
to choose the density of synchronisation marks:
we need to keep enough so that scanning does
not take long (and backward scanning can happen
within the input buffers) but not so much that the
synchronisation table cannot fit into main mem-
ory. The same technique can also be used to con-
nect the skeleton and data files with a redundant
copy of the source XML file.

Another use of the LS decomposition and syn-
chronisation marks is for streaming XML. One can
imagine a scenario in which XML is transmitted
not as a single file but by sending the skeleton
and data files through concurrent channels and
uses synchronisation marks for re-combining these
files. This in turn offers a number of possibilities
for distributed query optimisation on streaming
XML.

FF Vect ET Inl
(sec, i0) | (sec, i0) | (sec, io) | (sec, io)
1[5.00s, |500s, | -
45.6M 20.5M
+s+i
1| 3.54s, 1.40s, 11.35s, 1.74s,
45.6M 320K + | 90.8M 440K
s +1
2 [3.43s, | 1.19s, | 8.65s, | L.4bs,
45.6M 95K + s | 90.8M 184K
+1i

Figure 4: Some initial comparisons against EMBL

4.3 Exploiting Structure

All the techniques and proposals discussed so far
are independent of any kind of imposed structure
(DTD, XML Schema) on the data. What benefits
are there to having some form of type? We should
remark in passing that validating LS-decomposed
XML is extremely efficient. One might think that
having a DTD would provide efficient storage of
the skeleton, but this is not always the case. For
example, one could encode the Baseball skeleton
by encoding the sequence of choices in the DFAs
for each regular expression in the DTD. This is
not as efficient as LZ77 encoding. The latter finds
regularities (e.g. that players are typically either

pitchers or batters) in the data that are not ex-
pressed in the DTD. Having a rich catalogue of
base types, as in XML Schema, is clearly advan-
tageous.

However there are places in which we certainly
can exploit structure. One such is in the represen-
tation of (multi-dimensional) arrays. First note
that if the XML representation of a array is a
sequence of sequence of ..., then the data file will
contain the array in the form that is usual in main-
memory processing. But we can also compress the
skeleton by simply recording the tags with their
dimensions. XML is not typically thought of as
a medium for expression or even transmission of
array data, but vectorisation allows us to extend
its functionality.

4.4 Ordered Data

Some, but not all, XML storage schemes lose the
(horizontal) order in an XML tree [11, 13, 22]. At
the same time some, but not all, query languages
[8, 10] lose order — at least in complex queries and
in the name of efficiency. These languages and
storage schemes are well matched, but they are
inappropriate for textual data, and they are inap-
propriate for scientific data where it is frequently
important to store and query the sequential struc-
ture of data (time series, arrays etc.)

One of the main goals of this project is to in-
vestigate XML programming and query languages
for ordered data: their implementation against
the vectorised scheme we have described here and
their optimisation. The author is aware of two
such languages. The first, XDuce [15], is a full
(Turing-complete) programming language; but it
should be possible either to augment it with or
to recognize (in the code) the application of list-
like operators such as map and fold about which
some optimisation techniques are understood [7].
XDuce is typed, which means we may statically
determine which data files will be needed to sup-
port a program.

A second language is XQuery. Most implemen-
tations of XQuery are untyped, and XQuery itself
relies on XPath [8], which may not respect order.
However recent work on an algebra for XQuery
suggests that there may emerge some “superset of
a subset” of XQuery which is statically typed and
is order-sensitive. Again, we would want to ex-
periment with, and perhaps influence the design
of, this language.

Another long-term challenge is to combine ar-
ray processing with database query languages. Ideas
on how to do this surface from time to time [19,
16], but they have not come to market perhaps be-
cause there is no physical representation that will



Peter Buneman: Vectorised XML?

efficiently support both paradigms. Will vectori-
sation offer a solution? Another approach would
be to take a vector processing language (APL and
its derivatives are widely used on Wall street) and
extend it with primitives for XML-style tree traver-
sal.

5 Applications

It has been claimed that this decomposition of
XML may be particularly suitable for scientific
databases. The author is in contact with two ar-
eas in which this idea may work. The first is As-
tronomy. Quoting from an astronomer? the ob-
stacles include: “forcing a complex structure into
a set of tables so we can use an RDBMS” and
“Lack of suitable query languages. SQL can’t
do what we want.” Indeed the astronomers (and
physicists) sometimes make use of column stor-
age, but it is done in an ad hoc fashion. Why not
an XML query language or an XML query lan-
guage with some suitable vector-processing oper-
ations embedded in it? Robert Mann (colabora-
tor on this proposal) points out that there is a
new XML standard for exchange of tabular data
in astronomy http://www.us-vo.org/V0Table/.
This raises the exciting possibility that an astron-
omer could perform ad hoc queries — using the
techniques described above — directly on this data
without having first to go through the pain of con-
structing, loading and indexing a database.

In bioinformatics the story is similar. The dif-
ference is that size is less of an issue, but the struc-
ture can be more complex, and it can undergo fre-
quent changes. Again we believe a semistructured
approach that provides the ability to do the moral
equivalent of adding columns may help. Douglas
Armstrong (co-PI) has a number of projects, (Fly-
trap, Fly-brain [2]) that employ structured files
or relational databases that suffer from the lim-
itations described above. Typical datasets often
include time series and multidimensional arrays.
In addition to having a biologist on board, Arm-
strong’s systems will also provide suitable test data
for the project. The data analyses involve super-
vised machine learning techniques taking into con-
sideration biological context and algorithms for
designing optimal RNAi constructs.

A final application is in scientific archiving.
The author has recently been involved in work
to achieve efficient compression of all the previous
states of a scientific database [6]. The prime func-
tion of an archive is to recover efficiently any of
the previous database states. However one might
want to query the temporal history of a part of

2Clive Page, personal communication

the database. The technique interacts extremely
well with LS decomposition. It may therefore be a
better storage medium for querying archival data.
In Figure 5 the central line shows the size of suc-

SWISS-PROT
Size (bytes) x 106

900.00

850.00 /

Xmill(archive)

800.00 / ]
750.00 4

700.00

650.00 /d

600.00
550.00

500.00

450.00
400.00 /
350.00

300.00

250.00
200.00

150.00

100.00

50.00 == =
e e

0.00

20.00

Figure 5: Archiving Swissprot

cessive versions of the Swissprot database over a
five-year period. The top line is the size of the
archive file, which contains all previous versions.
At the end of that period it is less than twice the
size of the last version. The archive file is still
an XML file and can be compressed using LS.
The bottom line shows how effective that com-
pression is. The other lines show, for comparison,
how the new technique compares with a conven-
tional “diff”-based technique. We have good rea-
son to believe that the LS-decomposed file will
support efficient temporal queries over the data,
e.g. “when did this entry last change?”

Work plan

As in any scientific investigation, the likelihood of
sticking to a precise plan is low. Here, an idea of
how the project should progress over a three year
period.

Year 1. Implementation of the basic technique
with indexing. Implementation of a rudi-
mentary query language and Evaluation on
some scientific data sets with some “hand
coded” queries. Release of a prototype.

Number of versions



Peter Buneman: Vectorised XML?

Year 2. Design and implementation of a query

language with vector processing operations.

[11]

Build interfaces for typed languages (e.g. XDuce)

and investigate optimisation.

Year 3. Evaluation of query language work. If

successful, generate a “product” consisting
of database, API and query language. Fur-
ther evaluation on scientific data sets.

Dissemination. This will be via the normal chan-
nels of publications and demonstrations at the
major conferences and through the distribution
of prototypes.

References

(1]

2]

[10]

A. Ailamaki, D.J. DeWitt, M.D. Hill, and

M. Skounakis. Weaving relations for cache
performance. In Proceedings of the 27th
International Conference on Very Large Data
Bases, 2001.

J. D. Armstrong, K. Kaiser, A. Miiller, K.-F.
Fischbach, N. Merchant, and N. J. Strausfeld.
Flybrain - an atlas and database of the
drosophila nervous system. Neuron, 15:17-20,
1995.

Don S. Batory. On searching transposed files.
TODS, 4(4):531-544, 1979.

Peter A. Boncz, Annita N. Wilschut, and
Martin L. Kersten. Flattening an object algebra
to provide performance. In ICDE, pages
568-577, 1998.

Jon Bosak. Shakespeare in XML.
ibiblio.org/xml/examples/shakespeare/.

Peter Buneman, Sanjeev Khanna, Keishi
Tajima, and Wang-Chiew Tan. Archiving
scientific data. In Proceedings of ACM SIGMOD
International Conference on Management of
Data (SIGMOD), 2002. To appear.

Peter Buneman, Shamim Naqvi, Val Tannen,
and Limsoon Wong. Principles of Programming
with Collection Types. Theoretical Computer
Science, 149:3—48, 1995.

James Clark and Steve DeRose. XML Path
Language (XPath) Version 1.0.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

http://www.w3.org/TR/1999/REC-xpath-19991116.

George P. Copeland and Setrag Khoshafian. A
decomposition storage model. In Shamkant B.
Navathe, editor, Proceedings of the 1985 ACM
SIGMOD International Conference on
Management of Data, Austin, Tezxas, May
28-31, 1985, pages 268-279. ACM Press, 1985.

Alin Deutsch, Mary Fernandez, Daniela
Florescu, Alon Levy, and Dan Suciu. XML-QL:
A Query Language for XML.
http://www.w3.org/TR /1998 /NOTE-xml-gl-
19980819, August

1998.

[21]

[22]

(23]

Alin Deutsch, Mary F. Fernandez, and Dan
Suciu. ”storing semistructured data with
stored”. In Alex Delis, Christos Faloutsos, and
Shahram Ghandeharizadeh, editors, SIGMOD
1999, Proceedings ACM SIGMOD International
Conference on Management of Data, June 1-8,
1999, Philadephia, Pennsylvania, USA, pages
431-442. ACM Press, 1999.

Denise Draper, Peter Fankhauser, Mary
Fernndez, Ashok Malhotra, Kristoffer Rose,
Michael Rys, Jérome Siméon, and Philip
Wadler. Xquery 1.0 formal semantics.
http://www.w3.org/TR/2002/
WD-query-semantics-20020326/ .

Daniela Florescu and Donald Kossmann.
Storing and querying xml data using an rdmbs.
IEEE Data Engineering Bulletin, 22(3):27-34,
1999.

Elliotte Rusty Harold. Complete 1998 Major
League Statistics in XML.

http://www.ibiblio.org/xml/examples/baseball/.

Haruo Hosoya and Benjamin C. Pierce. XDuce:
A typed XML processing language (preliminary
report). In WebDB (Informal Proceedings),
pages 111-116, 2000.

Leonid Libkin, Rona Machlin, and Limsoon
Wong. A query language for multidimensional
arrays: design, implementation, and
optimization techniques. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data (SIGMOD’96), pages
228-239, 1996.

Hartmut Liefke and Dan Suciu. XMill: an
efficient compressor for XML data. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages
153-164, 2000.

D. Maier and B. Vance. A Call to Order. In
Proceedings of the Twelfth ACM Symposium on
Principles of Databases Systems, pages 1-16,
1993.

Peter Buneman. The Fast Fourier Transform as
a Database Query. Technical Report
MS-CIS-93-37, University of Pennsylvania, 1993.

SIG for XML Processing in Python.
www.python.org/sigs/xml-sig/.

SAX: The Simple API for XML, version 2.
www.megginson. com/SAX.

Jayavel Shanmugasundaram, Kristin Tufte,
Chun Zhang, Gang He, David J. DeWitt, and
Jeffrey F. Naughton. Relational databases for
querying XML documents: Limitations and
opportunities. In The VLDB Journal, pages
302-314, 1999.

J. Ziv and A. Lempel. A Universal Algorithm
for Sequential Data Compression. IEEE Trans.
Inform. Theory, 23(3):337-343, May 1977.



