

Visualization

- Visualization means two things:
 - Visualization as part of exploratory data analysis.

- Visualization as a means to present data/results in order to clearly illustrate a particular point or summary.
- The big gap I put between these was deliberate.

Visualization for Exploratory Data Analysis

- Visualization Principles
- 1. Maximize the useful information hitting your retina.
- View the data as an adversary. It is out to get you! It wants you to fail in your data science endeavour.
- Never (ever) let any anomaly in the data pass you by without having a potential explanation for it.
- 4. Search for the information that might help you do your job, and the information that is going to make your job hard.
- Never forget what you learnt during your exploratory data visualization.

Maximize Useful Information

- Never plot 3D graphs. Colour is your third dimension.
- Avoid overplotting.
- Use less aggregation rather than more.

No brainers

- Things to do with every numeric item:
 - Compute summary statistics...
 - Mean, standard deviation, median, range, interquartile range, etc.
 - Correlation, Covariance.
 - Plot histograms (note histograms below all have same mean and variance).

anomalies

Blood pressure data set

UCI ML repository says no missing data (well, for 20 years it did)

[Source: Padhraic Smyth]

Class conditional data

- Boxplots
- Make sure you know what type of boxplot
- Median, interquartile most common.

Check deeply

Data: US Post Codes

[Source: Padhraic Smyth]

Between two variables

Data: $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$. Let

$$ar{x} = rac{1}{N} \sum_{i=1}^{N} x_i, \ s_x = \sqrt{rac{1}{N-1} \sum_{i} (x_i - ar{x})^2}.$$

Likewise \bar{y} , s_y . Then the sample covariance is

$$s_{xy} = rac{1}{N-1} \sum_{i=1}^{N} (x_i - ar{x})(y_i - ar{y})$$

and the sample correlation is $\rho_{xy} = \frac{s_{xy}}{s_x s_y}$.

Scatterplots and overplotting

Overplotting

samples from bivariate normal

also: notice the axes!

Transformations

Log? Exp? Sqroot? Square? Sin/Cos?

Also Gaussianization?

What is the appropriate distribution?

- Consider the tails of distributions
- No infinite uniform distribution
- Power law distributions?
- Boundedness
- Truncated distributions
- Thresholded distributions

This constrains appropriate models.

Scatterplot matrices

Scatterplot matrix

Irrelevant variables?

Test the informativeness of variables.

■ How?

Summary

- Visualization is essential but not scalable (in dimension or size).
- For exploration simple is good. Histograms. Scatterplots.
- Do lots fast.
- Principle of small multiples
- Colour is the fourth dimension
- Understand the right axes and transformations.
- Understand all oddities. Find oddities you don't understand.
- How do you expect things to relate? Do you have evidence for this?
- Visualization informs models and vice versa.
- The data is out to get you. Defend yourself with knowledge.

Thanks

Charles Sutton for material from previous IRDS slides.

