Speech Synthesis



ext-to-speech (TTS)

- Definition: a text-to-speech system must be
- Able to read any text
- Intelligible

- Natural sounding
- The first of these puts a constraint on the method we can choose:
e playback of whole words or phrases in not a solution

- The second is actually closer to being a ‘solved problem’ than the third

- A generation task

- although not completely clear what objective function we are optimising
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From linguistic specification to
a waveform

* Concatenation builds up the utterance from units of
recorded speech:
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* Generation uses a model to generate the speech:
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could be a sequence of HMMs, or a single DNN
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DNN speech synthesis
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Demos

(Exit slide show mode for demo)
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Speech Synthesis: open problem 1

From input feature engineering (traditional NLP and knowledge sources)
to

learned-from-data linguistic features



Standard text processing pipeline
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lext processing pipeline

* A chain of processes

» Each process Is performed
by a model

* [ hese models are
iIndependently trained in a

supervised fashion on
annotated data
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-xample process |

* Part-of-speech tagger
» Accuracy Is very high

» But

* trained on annotated
text data

* categories are designed
for text, not speech

individually learned
from labelled data
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Representing linguistic features

- Encoding

Vocoder parameters + 1-0f-N for phoneme identity, POS, etc

 Dbinary partitions of the space, e.g. “is this a vowel”
« positional features
« within syllable, word, phrase

* Representing context

 Include previous & next phonemes, etc
« some features span the current utterance

* Problems

« sparsity (mostly zeros)

: . " * noise (errors in lingquistic processin
.,  Linguistic features ( J P 9

+ relevance (not all features are predictive of speech)



L earning embeddings of features

Acoustic features

Linguistic features



Stacking up more context

Vocoder parameters
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Speech Synthesis: open problem 2

From frame-by-frame prediction
to

trajectory generation



Frame-by-frame prediction
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Inconsistency
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[rajectory generation
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Speech Synthesis: open problem 3

From speaker-dependent speech synthesis
to
adaptable and controllable models

Lots of work already on this in the HMM framework, but still remains an open
problem for DNNs




Different ways to adapt the DNN
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Speech Synthesis: open problem 4

From output feature engineering (speech signal modelling, a.k.a vocoding)
to

learned-from-data speech generation



What to predict?

Vocoder parameters

Linguistic features



Direct waveform generation !
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