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Positional statement

I was trained as a physicist/ mathematician

Emphasis on Science in Data Science

I’m unconvinced by statements that large-scale data gathering
will eliminate the need for theory (i.e. hypothesis driven
research), except perhaps in some engineering applications.

However, science also produces vast amounts of data

Statistical models and machine learning techniques are
increasingly central in turning data into knowledge.
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Current group interests

Largish group: 4 post-docs, 6 students, 8 nationalities

Funding from several sources: ERC, EPSRC, Marie Curie,
School of Informatics, CDT/ DTC

Backgrounds from physics, engineering, CS and maths

Interests range from analysis of sequencing data to dynamical
systems theory
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Dynamical systems

Abstractions of real systems focussing on capturing the
mechanisms underlying their time-varying behaviour

Generally described by a state-vector and some (infinitesimal)
transition relationships, e.g. xt+1 = f (xt) + εt ,
dx = f (x)dt + σdW , . . .

Or they can also be defined in terms of agents interacting
with each other (sometimes, but not always, equivalent)

Useful when domain knowledge enables us to formulate
models grounded in what we understand as the physical
reality of the system

Particularly useful for prediction and understanding, i.e. they
strike a nice balance between explanatory and predictive power
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Biology in a slide

Where does variability come into play? What can we measure?
Nice example of a dynamical system with some physical knowledge

and a lot of uncertainty.
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Systems Biology

Since late 90s, biologists have been able to measure various
biochemical components of cells in a high-throughput fashion

Also, more precise microscopy-based measurements give
time-resolved measurements at single cells

Each measurement is a noisy readout of one facet of a (set
of) complex biological processes

Interpretable statistical models are (probably) the only way to
integrate these disparate data in one coherent mechanistic
picture

Specifically, I work with probabilistic latent variable models
(key difference: the latent variables and parameters have
physical meanings)

Guido Sanguinetti Data Science and me



Dynamical systems and biology
Two examples

Looking ahead and refs

Systems Biology

Since late 90s, biologists have been able to measure various
biochemical components of cells in a high-throughput fashion

Also, more precise microscopy-based measurements give
time-resolved measurements at single cells

Each measurement is a noisy readout of one facet of a (set
of) complex biological processes

Interpretable statistical models are (probably) the only way to
integrate these disparate data in one coherent mechanistic
picture

Specifically, I work with probabilistic latent variable models
(key difference: the latent variables and parameters have
physical meanings)

Guido Sanguinetti Data Science and me



Dynamical systems and biology
Two examples

Looking ahead and refs

Formal models meet machine learning
Epigenetics

Modelling behaviours

In many cases, we build models to replicate qualitative
behaviours, e.g. oscillations, transients, etc.

Theoretical computer scientists have developed languages to
describe and reason on behaviours, temporal logics, originally
to reason about software failures

A central problem is probabilistic model checking: given a
model of a stochastic system, and a behaviour of interest,
what is the probability that the behaviour will actually arise in
a smapled trajectory?

Generally computationally intensive to answer

Clearly relevant beyond software: given a model of a
bacterium, what is the probability that its behaviour will
switch to pathogenicity? Given a model of a pacemaker and
the heart, what is the probability that we will have fibrillation?
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Formal models meet machine learning
Epigenetics

Smoothed model checking

Model checking presumes full specification of a model

In real applications, that is not available; in particular
parameters are always uncertain → need tools for sensitivity
analysis

We have proved (with L. Bortolussi and D. Milios) that
satisfaction probabilities for a wide class of systems are
smooth functions of the parameters

We can turn the sensitivity analysis into a machine learning
problem: solve at a few parameter values, then predict
(emulate) everywhere else

Technical ingredient: Gaussian process binomial regression

Guido Sanguinetti Data Science and me



Dynamical systems and biology
Two examples

Looking ahead and refs

Formal models meet machine learning
Epigenetics

Smoothed model checking

Model checking presumes full specification of a model

In real applications, that is not available; in particular
parameters are always uncertain → need tools for sensitivity
analysis

We have proved (with L. Bortolussi and D. Milios) that
satisfaction probabilities for a wide class of systems are
smooth functions of the parameters

We can turn the sensitivity analysis into a machine learning
problem: solve at a few parameter values, then predict
(emulate) everywhere else

Technical ingredient: Gaussian process binomial regression

Guido Sanguinetti Data Science and me



Dynamical systems and biology
Two examples

Looking ahead and refs

Formal models meet machine learning
Epigenetics

Other work and current challenges

As well as sensitivity analysis, we can also perform
optimisation, e.g. designing a system that (robustly) satisfies
a certain behaviour

Or solve inverse problems, e.g. having observed satisfaction/
not satisfaction of certain behaviours, can we determine the
parameters of the system?

Technical ingredients: Bayesian optimisation

Challenges: most GP-based methods unfeasible beyond 5-10
dimensions (number of parameters

Possible solutions: sparsification, primal optimisation,
dimensionality reduction (?), identifying modularities (??)
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Epigenetics

Genetics and transcription cannot be all; spatial organisation of
chromosomes plays a role. This is determined by chemical
modifications to DNA and histones.
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Epigenetics

Epigenetics: what the data looks like

Each row is a tiny fraction of a next-generation sequencing
experiment’s data. Each row ≥1GB of data. How do we determine
relationships between the rows?
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Current results

Identifying statistically significant differences between the
rows is already difficult: some success adapting a kernel
method, Maximum Mean Discrepancy (Gretton et al 2008),
to sequencing data (Schweikert et al, BMC Genomics 2013,
Mayo et al, Bioinformatics 2015)

Predictive models are useful: e.g., given a hypothesis that the
green rows are mechanistically determined by the pink rows,
we should be able to train a fairly accurate regression model

Recent success in predicting histone modifications from
binding of transcription factor proteins (Benveniste et al,
PNAS 2014)

Technical challenges: large size of the data sets, large number
of covariates, inhomogeneities along chromosomes (latent
variables?)
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Formal models meet machine learning
Epigenetics

Current lines of work

Develop predictive models to relate DBA sequence and
epigenetic marks with each other, based on generalised linear
models (T. Mayo)

Model the interactions between various epigenetic factors and
gene expression (consensus clustering, soon to move to more
general graphical models) (A. Kapourani, CDT)

Also important to understand processes downstream of
transcription, e.g. RNA folding (A. Selega) and splicing (Y.
Huang), and (remarkably) these are often also tied to
epigenetics
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Looking ahead

At the moment, the two lines of work appear fairly disjointed,
how do we integrate them?

Technical challenge 1: scaling up formal analysis methods

Technical challenge 2: (almost) all epigenetic data is a
snapshot of a stochastic dynamical process. How do we do
inference for (large scale) stochastic dynamical systems from
(population/ time) average static measurements?

Technical challenge 3: how do we identify effective smaller
(dynamical) models that match the behaviours observed in
data?
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