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Hello! These slides were visual aids for a talk, and weren’t designed

to be read. I’ve inserted some notes here to summarize what the

points were supposed to be, and to give further references.

1. Hierarchical modelling is essential. Many models contain large

numbers of ‘nuisance variables’. We need to learn how these are

distributed, because if we make assumptions (including vague or

so-called ‘uninformative’ ones), we’ll simply get wrong answers. The

model I discussed was referring to: “Inferring the force law in the

solar-system from a snapshot”, Bovy et al., 2010.

http://arxiv.org/abs/0903.5308

More thoughts and references on hierarchical modelling are in my

discussion http://homepages.inf.ed.ac.uk/imurray2/pub/11catchup/catchup.pdf

of http://dx.doi.org/10.1111/j.1467-9868.2011.01025.x

Hierarchical models can be hard to infer. Example:

http://homepages.inf.ed.ac.uk/imurray2/pub/10hypers/

http://arxiv.org/abs/0903.5308
http://homepages.inf.ed.ac.uk/imurray2/pub/11catchup/catchup.pdf
http://dx.doi.org/10.1111/j.1467-9868.2011.01025.x
http://homepages.inf.ed.ac.uk/imurray2/pub/10hypers/


2. Real-world models have a lot of messy detail:

1) complicated instrument-error distributions we may not care about;

2) theory encoded in expensive-to-run simulations.

Machine Learning can help.

If we don’t want wrong models (point 1.) we need to learn from large

amounts of data about our instruments, and from simulation data

describing our theories. I’ve been involved in a series of papers on

flexible black-box probabilistic models that could be used here:

http://homepages.inf.ed.ac.uk/imurray2/pub/11nade/

http://homepages.inf.ed.ac.uk/imurray2/pub/13rnade/

http://homepages.inf.ed.ac.uk/imurray2/pub/14dnade/

http://homepages.inf.ed.ac.uk/imurray2/pub/11nade/
http://homepages.inf.ed.ac.uk/imurray2/pub/13rnade/
http://homepages.inf.ed.ac.uk/imurray2/pub/14dnade/


4. Probabilistic inference methods need extending.

Approximate inference is a heavily-mined and active area. Getting

up-to-speed and finding a niche is challenging. However, work in this

area is important. In deep and wide graph structures, with billions of

observations in some of the plates, it’s hard to do fully Bayesian

inference.

Some of my work has been on identifying common small inference

problems, which are usually only part of an analysis, and developing

easier-to-use inference methods for them. E.g.

http://homepages.inf.ed.ac.uk/imurray2/pub/10ess/

I’m now also interested in developing easier-to-use methods to

summarize and communicate the results of local inferences across

large models. I believe the way forward is fitting flexible

representations of beliefs, by combining machine learning methods and

approximate inference algorithms.

http://homepages.inf.ed.ac.uk/imurray2/pub/10ess/


Acceleration law around the sun

a(r) = −A
(
r

r0

)−α

From a snapshot:
8 planet positions and velocities



Graphical model
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Hierarchical graphical model
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Inferences about the Sun



Priors on nuisance distributions
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Gravitational exponent
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Figure 1: Our unified graphical model (also known as a Bayesian network [27]), for astro-
nomical image data. It integrates in a principled framework: large-scale cosmological models
of galaxy and Milky Way formation; galaxy appearance models; spectral emission models
and detailed camera, sky and telescope models. The shaded oval nodes are observed vari-
ables (i.e., their values are known) while the unshaded ones are unobserved and hence will
be inferred from the raw astronomical data. The square nodes represent priors, typically
informed by well-understood physics models. The arrows represent dependencies between
variables in the model (and the lack thereof correspond to assumptions of independence).
The conditional probability distributions within the model (which detail how a particular
node depends on those variables which point to it) are not shown, but will be described in
the text. The rectangles refer to replications of variables, e.g. an image will contain many
stars/galaxies. The realization of this model is the ultimate goal of the project, but initial
work will focus on sub-pieces of the model. This figure is best viewed in color.

David Hogg, Rob Fergus



Machine Learning?

— Density estimation
Neural networks and Gaussian processes

— Inference methods
Statistical methods: MCMC, etc.

Learning: recognition networks

Representations: communicating results



Appendix Slides



Snapshot of the solar-system

Model for the sun: ω = {logA,α}

Acceleration law, a(r) = −A [r/r0]
−α

Model for each planet:

log εn ∼ pε(·|θε) binding energy

en ∼ p(·|θe) radial asymmetry

fn ∼ Uniform[0, 1] fraction of time through orbit

from aphelion (say), t/Torbit

Observations in sky relate to:

r, vr, vt: radial distance, radial velocity, transverse velocity





Density estimation
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GP Density estimation

p(x|f) =
1

Z(f)
Φ(f(x))π(x)

f ∼ GP
Φ = sigmoidal function

π = base measure
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Gaussian Process Density Sampler

Adams, Murray and MacKay (2009).



Modelling via the Chain Rule

P (x1)

P (x2 |x1)

P (x3 |x1, x2)

P (x4 |x1, x2, x3)

P (x) = P (x1)

K∏

k=2

P (xk |x<k)



Mixture Density Networks
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Figure stolen from Korin Richmond



Mixture of Gaussian samples



Simulation samples



AMDN samples



Results of inference
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Sequential activation

θ1 θ2 θ3 θ4

x1 x2 x3 x4

H hidden units

P (x) = P (x1 | θ1) . . .



Sequential activation

θ1 θ2 θ3 θ4

x1 x2 x3 x4

H hidden units

P (x) = P (x1 | θ1)P (x2 | θ2(x1)) . . .



Sequential activation

θ1 θ2 θ3 θ4

x1 x2 x3 x4

H hidden units

P (x) = P (x1 | θ1)P (x2 | θ2(x1))P (x3 | θ3(x1, x2)) . . .



Sequential activation

θ1 θ2 θ3 θ4

x1 x2 x3 x4

H hidden units

O(DH)

P (x) = P (x1 | θ1)P (x2 | θ2(x1))P (x3 | θ3(x1, x2))P (x4 | θ4(x1, x2, x3)) . . .



NADE results
Experiments

Manuscript under review by AISTATS 2011

Table 1: Distribution estimation results. To normalize the results, the average test log-likelihood (ALL) for each
model on a given dataset was subtracted by the ALL of MoB (which is given in the last row under “Normalization”).

95% confidence intervals are also given. The best result as well as any other result with an overlapping confidence

interval is shown in bold.

Model adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web

MoB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
± 0.10 ± 0.04 ± 0.53 ± 0.10 ± 1.12 ± 0.32 ± 0.11 ± 0.23

RBM 4.18 0.75 1.29 -0.69 12.65 -2.49 -1.29 0.78
± 0.06 ± 0.02 ± 0.48 ± 0.09 ± 1.07 ± 0.30 ± 0.11 ± 0.20

RBM 4.15 -1.72 1.45 -0.69 11.25 0.99 -0.04 0.02
mult. ± 0.06 ± 0.03 ± 0.40 ± 0.05 ± 1.06 ± 0.29 ± 0.11 ± 0.21
RBForest 4.12 0.59 1.39 0.04 12.61 3.78 0.56 -0.15

± 0.06 ± 0.02 ± 0.49 ± 0.07 ± 1.07 ± 0.28 ± 0.11 ± 0.21
FVSBN 7.27 11.02 14.55 4.19 13.14 1.26 -2.24 0.81

± 0.04 ± 0.01 ± 0.50 ± 0.05 ± 0.98 ± 0.23 ± 0.11 ± 0.20
NADE 7.25 11.42 13.38 4.65 16.94 13.34 0.93 1.77

± 0.05 ± 0.01 ± 0.57 ± 0.04 ± 1.11 ± 0.21 ± 0.11 ± 0.20

Normalization -20.44 -23.41 -98.19 -14.46 -290.02 -40.56 -47.59 -30.16

To measure the sensitivity of NADE to the ordering of

the observations we trained a dozen separate models for

the mushrooms, dna and nips-0-12 datasets using

different random shufflings. We then computed the

standard deviation of the twelve associated test log-

likelihood averages, for each of the datasets. Standard
deviations of 0.045, 0.050 and 0.150 were observed on
mushrooms, dna and nips-0-12 respectively, which

is quite reasonable when compared to the intrinsic

uncertainty associated with using a finite test set (see
the confidence intervals of Table 1). Hence, it does

not seem necessary to optimize the ordering of the

observation variables.

One could try to reduce the variance of the learned so-

lution by training an ensemble of several NADE models

on different observation orderings, while sharing the

weight matrix W across those models but using differ-
ent output matrices V. While we haven’t extensively
experimented with this variant, we have found such

sharing to produce better filters when used on the

binarized MNIST dataset (see next section).

6.2 NADE vs. an intractable RBM

While NADE was inspired by the RBM, does its per-
formance come close to that of the RBM in its most

typical regime, i.e. with hundreds of hidden units? In
other words, was tractability gained with a loss in

performance?

To answer these questions, we trained NADE on a

binarized version of the MNIST dataset. This ver-

sion was used by Salakhutdinov and Murray (2008) to

train RBMs with different versions of contrastive di-

vergence and evaluate them as distribution estimators.
Since the partition function cannot be computed ex-

actly, it was approximated using annealed importance
sampling. This method estimates the mean of some

unbounded positive weights by an empirical mean of

samples. It isn’t possible to meaningfully upper-bound

the partition function from these results: the true test
log-likelihood averages could be much smaller than the

values and error bars reported by Salakhutdinov and

Murray (2008), although their approximations were

shown to be accurate in a tractable case.

RBMs with 500 hidden units were reported to ob-

tain −125.53, −105.50 and −86.34 in average test log-
likelihood when trained using contrastive divergence

with 1, 3 and 25 steps of Gibbs sampling, respectively.
In comparison, NADE with 500 hidden units, a learn-
ing rate of 0.0005 and a decrease constant of 0 obtained

−88.86. This is almost as good as the best RBM claim

and much better than RBMs trained with just a few

steps of Gibbs sampling. Again, it also improves over
mixtures of Bernoullis which, with 10, 100 and 500 com-

ponents obtain −168.95, −142.63 and −137.64 average

test log-likelihoods respectively (taken from Salakhut-
dinov and Murray (2008)). Finally, FVSBN trained

by stochastic gradient descent achieves −97.45 and

improves on the mixture models but not on NADE.

It then appears that tractability was gained at almost
no cost in terms of performance. We are also confident

that even better performance could have been achieved

with a better optimization method than stochastic gra-

dient descent. Indeed, the log-likelihood on the training

★ Little variation when changing input ordering:
  DNA = +/- 0.05 
  MUSHROOMS = +/- 0.045 
  NIPS-0-12 = +/- 0.15



NADE results

• On a binarized version of MNIST:

Experiments

Model Log. Like.
MoB -137.64

  RBM (CD1) -125.53
  RBM (CD3) -105.50

    RBM (CD25) -86.34
FVSBN -97.45
NADE -88.86

Manuscript under review by AISTATS 2011

Figure 2: (Left): samples from NADE trained on a binary version of mnist. (Middle): probabilities from
which each pixel was sampled. (Right): visualization of some of the rows of W. This figure is better seen on a
computer screen.

set it to 0, to obtain:

0 =
∂KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

∂τk(i)

0 = −ck − Wk,·µ(i) + log

�
τk(i)

1 − τk(i)

�

τk(i)

1 − τk(i)
= exp(ck + Wk,·µ(i))

τk(i) =
exp(ck + Wk,·µ(i))

1 + exp(ck + Wk,·µ(i))

τk(i) = sigm


ck +

�

j≥i

Wkjµj(i) +
�

j<i

Wkjvj




where in the last step we have replaced the ma-
trix/vector multiplication Wk,·µ(i) by its explicit sum-

mation form and have used the fact that µj(i) = vj for

j < i.

Similarly, we set the derivative with respect to µj(i)
for j ≥ i to 0 and obtain:

0 =
∂KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

∂µj(i)

0 = −bj − τ(i)�W·,j + log

�
µj(i)

1 − µj(i)

�

µj(i)

1 − µj(i)
= exp(bj + τ(i)�W·,j)

µj(i) =
exp(bj + τ(i)�W·,j)

1 + exp(bj + τ(i)�W·,j)

µj(i) = sigm

�
bj +

�

k

Wkjτk(i)

�

We then recover the mean-field updates of Equa-
tions 7 and 8.
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RNADE results

Dataset dim size Gaussian MFA FVBN RNADE-MoG RNADE-MoL

Red wine 11 1599 −13.18 −10.19 −11.03 −9.36 −9.46
White wine 11 4898 −13.20 −10.73 −10.52 −10.23 −10.38
Parkinsons 15 5875 −10.85 −1.99 −0.71 −0.90 −2.63
Ionosphere 32 351 −41.24 −17.55 −26.55 −2.50 −5.87
Boston housing 10 506 −11.37 −4.54 −3.41 −0.64 −4.04



RNADE results
Model Training LogL Test LogL

MoG N =50 111.6 110.4
MoG N =100 113.4 112.0
MoG N =200 113.9 112.5
MoG N =300 114.1 112.5
RNADE-MoG K =10 125.9 123.9
RNADE-MoG K =20 126.7 124.5
RNADE-MoL K =10 120.3 118.0
RNADE-MoL K =20 122.2 119.8

Figure 2: Top: 15 datapoints from the TIMIT core-test set. Center: 15 samples from a MoG model
with 200 components. Bottom: 15 samples from an RNADE with 1024 hidden units and output
components per dimension. On each plot, time is shown on the horizontal axis, the bottom row
displays the energy feature, while the others display the filter bank features (in ascending frequency
order from the bottom). All data and samples were drawn randomly.



Deep learning?



One motivation
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Sequential deep activation

θ1 θ2 θ3 θ4

x1 x2 x3 x4

H hidden units

H hidden units

O(H2) links



Sequential deep activation

θ1 θ2 θ3 θ4

x1 x2 x3 x4

H hidden units

H hidden units

O(H2) links



Sequential deep activation

θ1 θ2 θ3 θ4

x1 x2 x3 x4

H hidden units

H hidden units

O(H2) links

O(DH2)



A completing machine

θ1 θ2 θ3 θ4 θ5

x1 x2 x3 x4 x5

H hidden units

H hidden units

O(H2) links



Deep NADE

Train time: O(DH +H2) per update

Test time: predict features in any order
(can condition on observations)

Different orderings not consistent:
— Seems bad, but. . .
— have trained large ensemble
— combining different orderings works better



Arbitrary ordering: inpainting
-61.21 -36.33

-84.40 -46.22

-96.68 -66.26

-86.37 -73.31

-93.35 -79.40

-45.84 -41.88



Deep ensembles — results
Small improvements across most UCI datasets

Finally beat MoG on image patches:

Table 4. Average test-set log-likelihood for several models trained
on 8 by 8 pixel patches of natural images taken from the BSDS300
dataset. Note that because these are log probability densities they
are positive, higher is better.

Model Test LogL

MoG K =200 (Zoran & Weiss, 2012) 152.8
RNADE 1hl (fixed order) 152.1
RNADE 1hl 143.2
RNADE 2hl 149.2
RNADE 3hl 152.0
RNADE 4hl 153.6
RNADE 5hl 154.7
RNADE 6hl 155.2
EoRNADE 6hl 2 ord. 156.0
EoRNADE 6hl 32 ord. 157.0

ever reported on this task. Ensembles of RNADEs also show

Figure 5. Top: 50 examples of 8× 8 patches in the BSDS300
dataset ordered by decreasing likelihood under a 6-hidden-layer
NADE. Bottom: 50 samples from a 6-hidden-layer NADE.


