Big Data Graph Data Incomplete Information

Leonid Libkin

A bit about the group

- Ranges from 6 (never again) to one
- Right now, 2 postdocs, soon 3
- Looking for new student (one, at most two)
- Key themes: data management (3 Vs of big data - volume, variety, verasity: scalability; relational, XML, graph data; incompleteness and inconsistency), foundations (as they are needed to handle those questions)

Past students/postdocs

- Mainly academic jobs (I2 out of I4 have academic positions in places such as Paris, Singapore, Santiago, Warsaw, Bordeaux; one at IBM, one at Oracle)
- Several notable awards by students:
- BCS Distinguished Dissertation Award
- Cor Bayeen Award
- EPSRC postdoctoral fellowship
- ACM SIGMOD Honorable mention (2nd prize)
- 8 (or more) best paper awards
- Main demands to students:
- very good background
- interest in what they are doing
- Flexibility with projects: there is always a choice, nothing is ever imposed

Foundational work

If not...

Big data and data management

- Everyone is talking about untapped value of big data
- but data analytics only account for a small fraction of time invested in big data processing!
- Data wrangling (handling data before analyses can begin) can take up to 80% of the effort.
- But data management tasks need to be adapted.

The 4 Vs

- Volume, Velocity, Variety,Veracity
- Volume - scalability
- Variety - graph data (XML is done and gone)
- Veracity - handling uncertainty

Scalability

Scale-independence: answering queries regardless of size
People do it in ad hoc ways (eg Facebook), we study it

Scalability

- Need sublinear algorithms
- Massive literature, but mainly concentrates on summary properties
- find average number of friends in a social network
- can be found in $O(\sqrt{n})$ up to a factor close to 2
- But no good algorithms for typical data management queries
- Find friends of John who live in Edinburgh

Graph Databases

Old techniques do not work. New issues: combining data and topology

Graph data querying

- Data in graphs: standard techniques (SQL)
- Topology of graphs: specialized queries
- reachability + regular expressions
- Combining is nontrivial - but necessary

Incomplete Information

- Practice: incorrect answers (your laptop thinks that $|X|>|Y|$ and $X-Y=\varnothing$ are consistent!)
- Theory: computationally expensive notions of correctness
- It has been like that for 30+ years, until very recently
- Trying to break the curse of incomplete information

Why $\mathrm{N}-\mathrm{I}=0$ for all N

built into SQL standards, every one from the 1980s - hence you have it on you laptop!

Why $\mathrm{N}-\mathrm{I}=0$ for all N

built into SQL standards, every one from the 1980s - hence you have it on you laptop!

R S Difference R-S

1
2
3
\ldots
N

\square

Why $\mathrm{N}-\mathrm{I}=0$ for all N

built into SQL standards, every one from the 1980s - hence you have it on you laptop!

R S Difference R-S

1
2
3
\ldots
N

SELECT R.A FROM R
WHERE R.A NOT IN
(SELECT S.A FROM S)

Why $\mathrm{N}-\mathrm{I}=0$ for all N

built into SQL standards, every one from the 1980s - hence you have it on you laptop!

R S Difference R-S

1
2
3
\ldots
N

SELECT R.A FROM R
WHERE R.A NOT IN
(SELECT S.A FROM S)

Answer: EMPTY for all N

Why $\mathrm{N}-\mathrm{I}=0$ for all N

built into SQL standards, every one from the 1980s - hence you have it on you laptop!

R S Difference R-S

1
2
3
\ldots
N

SELECT R.A FROM R
WHERE R.A NOT IN
(SELECT S.A FROM S)

Answer: EMPTY for all N
So $\mathrm{N}-1=0$ after all!

If interested...

- please come and talk to me
- libkin@inf.ed.ac.uk
- https://www.google.co.uk/\#q=libkin

