Speech Synthesis



Text-to-speech (TTS)

Definition: a text-to-speech system must be
« Able to read any text
* Intelligible

« Natural sounding

The first of these puts a constraint on the method we can choose:

e playback of whole words or phrases in not a solution

The second is actually closer to being a ‘solved problem’ than the third

A generation task

« although not completely clear what objective function we are optimising



From text to linguistic
specification
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From linguistic specification to
a waveform

* Concatenation builds up the utterance from units of
recorded speech:
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* Generation uses a model to generate the speech:
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could be a sequence of HMMs, or a single DNN
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Synthetic speech created from
audiobooks
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DNN speech synthesis

Vocoder parameters
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Speech Synthesis: open problem

From input feature engineering (traditional NLP and knowledge sources)
to

learned-from-data linguistic features



Standard text processing pipeline

linquistic
lext specification
 Front end )
» [tokenize][ Phrase |ntonat|on »

individually learned
from labelled data



lext processing pipeline

* A chain of processes

» Each process Is performed (Front end
by d mOdeI — [tokenlze] [POS Phrase mtonatlon
* [hese models are \\ ‘ //
mdeperjdently tr;uned N a olvicualy learned
supervised fashion on from labelled data

annotated data
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Front end g,

-xXample process | \T1//

individually learned
from labelled data

* Part-of-speech tagger

* Accuracy Is very high

* But
* trained on annotated E’i EZCtOf
text data NP Beard,
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* Pronunciation mode|
* dictionary look-up, plus
* letter-to-sound model

* But

* need deep knowledge of
the language to design the
phoneme set

* human expert must write
dictionary

Front end

-xample process 2 \{T7/

individually learned
from labelled data
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-xample process 2

individually learned
from labelled data

This sequence Is the
annotated training

data for our letter-to- '
sound predictor

13-7



individually learned
from labelled data

* Phrase-break prediction

* binary classifier using POS
sequence as Input

* But

* trained on annotated
spoken data

* therefore very small
training set
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Front end
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individually learned
from labelled data
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individually learned
from labelled data

This sequence Is the
annotated training

data for our phrase \
break predictor

14-5



Representing linguistic features

- Encoding
Vocoder parameters - 1-of-N for phoneme identity, POS, etc
Oﬂf  binary partitions of the space, e.g. “is this a vowel”
. itional features
h posi
: QQOC

Pesrmed - within syllable, word, phrase

" QOO
3 .
\’;\ 4.>,-‘ - Representing context
Peszsd
h N\ _ .
2 l'l * include previous & next phonemes, etc
N7

L
NSRS - some features span the current utterance

 Problems

« sparsity (mostly zeros)

~ Linguistic features / * noise (errors in linguistic processing)

« relevance (not all features are predictive of speech)
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L earning embeddings of features

Acoustic features

Bottleneck layer

Linguistic features



Stacking up more context

Vocoder parameters
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Speech Synthesis: open problem 2

From frame-by-frame prediction
to

trajectory generation
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Frame-by-frame prediction
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Inconsistency
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Speech Synthesis: open problem 3

From speaker-dependent speech synthesis
to
adaptable and controllable models

Lots of work already on this in the HMM framework, but still remains an open
problem for DNNs
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Different ways to adapt the DNN

SRR VR Vocoder

S ‘parameters

Feature .mapping

p— --.----;Vocoder

.2 ....iparameters

i_vector ¢ Linguistic features

Gender code
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Speech Synthesis: open problem 4

From output feature engineering (speech signal modelling, a.k.a vocoding)
to

learned-from-data speech generation
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What to predict!

Vocoder parameters
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Direct wavetorm generation ¢
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