Speech Synthesis

Text-to-speech (TTS)

Definition: a text-to-speech system must be

- Able to read any text
- Intelligible
- Natural sounding
- The first of these puts a constraint on the method we can choose:
 - playback of whole words or phrases in not a solution
- The second is actually closer to being a 'solved problem' than the third

<u>A generation task</u>

• although not completely clear what objective function we are optimising

From linguistic specification to a waveform

• Concatenation builds up the utterance from units of recorded speech:

• Generation uses a model to generate the speech:

could be a sequence of HMMs, or a single DNN

Synthetic speech created from audiobooks

DNN speech synthesis

Vocoder parameters

Linguistic features

Speech Synthesis: open problem 1

From input feature engineering (traditional NLP and knowledge sources)

to

learned-from-data linguistic features

Standard text processing pipeline

linguistic specification

text

Text processing pipeline

- A chain of **processes**
- Each process is performed by a **model**
- These models are independently trained in a supervised fashion on annotated data

9

- Part-of-speech tagger
- Accuracy is very high
- <u>But</u>
 - trained on **annotated** text data
 - **categories** are designed for text, not speech

NP Public NPSAffairs NP Institute IN at NP U-Mass NP Boston, NP Doctor NP Ed NP Beard, VBZsays DT the NN push TN for VBPdo PP it. PP yourself

- Pronunciation model
 - dictionary look-up, *plus*
 - letter-to-sound model
- <u>But</u>
 - need deep knowledge of the language to design the phoneme set
 - human **expert** must write dictionary

13-2

```
AHO
ADY
            TY()
     FΥ
AD7
     AE1
            -7
          D
    EY1
AF.
        THO JH TY1 AHO N
AEGEAN
AEGTS
       TY1 JH AHO S
            G AAO
AEGON
       EY1
                  N
AELTUS AE1 L T AHO S
AENEAS AE1 N TYO AHO
                        S
        AHO N IY1 IHO
AENEID
                        D
            EY1 K W IHO T R AAO N
AEOUITRON
AER
     EH1 R
AERTAL.
        EH1 R TYO AHO L
         EH1 R TYO AHO L Z
AERTALS
AERIE
       EH1 R TYO
        EH1 R IYO AHO N
AERTEN
         EH1 R TYO AHO N Z
AERTENS
AERTTALTA
            EH2 R THO T AE1 L Y AHC
      EH1 R OWO
AERO
```


7

Ζ

S

- Phrase-break prediction
 - binary classifier using POS sequence as input
- <u>But</u>
 - trained on **annotated** spoken data
 - therefore very **small** training set

ADTNBnineteen-CDNBeighteenCDNBstateNNNBconstitutionalJJNBamendmentNNB

NB

B

JJ

NN

This sequence is the annotated training data for our phrase break predictor

Representing linguistic features

Vocoder parameters

Encoding

- 1-of-N for phoneme identity, POS, etc
- binary partitions of the space, e.g. "is this a vowel"
- positional features
 - within syllable, word, phrase

Representing context

- include previous & next phonemes, etc
- some features span the current utterance

Problems

- sparsity (mostly zeros)
- noise (errors in linguistic processing)
- relevance (not all features are predictive of speech)

Learning embeddings of features

Stacking up more context

Speech Synthesis: open problem 2

From frame-by-frame prediction

to

trajectory generation

Frame-by-frame prediction

Inconsistency

Trajectory generation

Speech Synthesis: open problem 3

From **speaker-dependent** speech synthesis

to

adaptable and controllable models

Lots of work already on this in the HMM framework, but still remains an open problem for DNNs

Different ways to adapt the DNN

Speech Synthesis: open problem 4

From output feature engineering (speech signal modelling, a.k.a vocoding)

to

learned-from-data speech generation

What to predict?

Linguistic features

