$$\pi(\theta|x) = \frac{f(x|\theta)p(\theta)}{f(x)}$$

Prof Ruth King School of Mathematics

(Statistics)

$$f(\boldsymbol{x}|N,\boldsymbol{\theta},\boldsymbol{\epsilon}_{1:n}) \propto \prod_{i=1}^{n} f(\boldsymbol{x}_{i}|\boldsymbol{\theta},\boldsymbol{\epsilon}_{i}) \times \frac{N!}{(N-n)!} (1-p^{*})^{N-n}$$

Who am !?

- I am an applied statistician motivated by real data and associated questions of interest.
- To answer the questions we need to:
 - develop sensible and realistic models that describe the main underlying characteristics of the data;
 - fit these models to data in a tractable manner; and
 - interpret the data accordingly.

Research interests

- Bayesian inference;
- Missing data (a very common problem!);
- Hidden (semi-)Markov models (these are really cool!);
- State-space models;
- Incorporating individual heterogeneity;
- Integrated models;
- Applications to ecology and epidemiology.

Ecology

- The field of ecology is very data rich (think of all the times your biology colleagues are on fieldwork!).
- However, there is often as associated lack of skills to fully analyse the collected data.
- New statistical models and associated model-fitting tools are rapidly being developed to provide robust analyses of the available data.

Case study 1

- Capture-recapture studies are often collected on wildlife populations when abundance and/or survival rates are of interest.
- These involve observers going into the field at a series of capture events.
- At each capture event all observed individuals are uniquely identified (possibly by attaching a ring/tag), recorded and released.

Data

- The data correspond to the encounter history of each individual observed within the study.
- An example encounter history:

1 0 0 0 1 1 0 2

Additional individual-level information may also be recorded e.g. weight, "state".

Questions of interest

- How can we sensibly model both time and agedependence on survival in a parsimonious manner?
- How can we incorporate state dependent survival rates when individuals move between states?
- Do individuals exhibit "memory" with regard to their movement? And if so how can we also include additional covariate information?
- Given the above models, how can we efficiently fit the models to real data?

Case study 2

- For wildlife management/conservation data are often collected on individual animals.
- These often take the form of trapping or observing animals via a series of "traps":

Spatially explicit capture-recapture

- The capture probability of individuals differ over traps dependent on the home-range of the individual.
- Traditionally, the capture probability is simply specified as a function of the fixed (unobserved) home-range centre of the individual.
- This ignores the known locations of the individuals from observed trappings/sightings, so that:
 - Information is thrown away (poor practice);
 - It implicitly allows animals to "teleport".

Output

The output of the statistical analysis is in the form of an estimated density for the population (in terms of home range centres).

Questions of interest

- How can we incorporate information relating to known observed locations of individuals (i.e. when trapped) into the analysis?
- What happens if the animals under study are territorial/social (i.e. non independent individuals)?
- How can we incorporate "moving" home range centres?
- How do we incorporate inhomogeneous landscapes?
- How can we fit the models efficiently?

Thankyou!

If you want to know more – come and ask!