IRDS: Evaluation, Debugging,
and Diagnostics

Charles Sutton
University of Edinburgh

Partitioning Data

Training Validation Test

Training : Running learning algorithms

Validation : Tuning parameters of learning algorithm
(e.q., regularization parameters)

Test : Estimate performance on new situation
ideally only used once...

but this is never really possible

(research field overfitting!)

Cross-Validation

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
(train) (train) (test) (train) (train)

Split data into K equal partitions
For each partition

Train on all other
Average performance over K folds

This way every example is used an a test example
(useful if data scarce)

Cross-Validation

for parameter tuning (e.g., kin k-nearest neighbour)
Fold 1 Fold 2 Fold 4 Fold 5
(train) (train) (train) (train)

First partition into training and test set
Then on training set only:
For each value of parameter,
e.g., kin{1,2,510,...}
Run K-CV to estimate performance
Train one model with best k on entire train set

Measures for Regression

Root Mean Squared Error (RMSE)

N
RMSE = | 7 3 (= /)
Test set denoted
{(@i,yi) |1 €41,2,... N}}

Mean Absolute Error | |
Learned Regression function

1 X fi)
MAE = — ; yi — f(@:)

Measures for Classification

True label
| -

Accuracy Predicted + | TP | FP
%age correctly labeled abel
- |FN | TN
TP + TN
ACC =
N
. TP: True positives
Precision |
) .) Number of test instances where
when | say +, how often am | right? |
TP true label == +, predicted label == +
P = P iti
TP + FP FP: False posmves
TN: True negatives
Recall FN: False negatives
of the real +, how many do | find” TP + FP + TN + FN = N

TP
"= TP T FN \

Total number of
test instances

(for a multi-class problem, can compute P and R for each class)

Interesting Facts about P, R

 Accuracy is a simple measure and a single number. This is good.
 Precision and recall can be interesting when
 The classes are highly skewed
* You want to understand performance on individual classes
 One class more important, e.qg., information retrieval
 Many classes and want to break

* You want to understand performance as a function of how “conservative”
the predictions are.

« P andR are an interesting pair because they are in conflict
A good principle for pairs of evaluation measures

Debugging and Diagnostics

Based on slides from Stephen Gould and Andrew Ng

What do | do now?

* You build a classifier (e.g., a spam filter using logistic regression) and the
error is too high.

 What do you do to fix it? There are lots of things you could try:

Collect more training data.

Add different features (e.g., from the email header)

Try fewer features (e.g., exclude rare words from the classifier)
Try an SVM instead of logistic regression

Fix a bug in your stochastic gradient descent procedure

* You could do trial and error, but better is to think of diagnostics

Bias-Variance Tradeoft

Let 6 € R be some quantity we estimate by a random variable §
Example:

N
A 1
9:/:Ep(:z:)daj H:N;xi Ti...TN ~D

Define the bias and variance
Bias(d) = E(0 —0) = 0 — i
N 2
Var {9 — ,u}
where W = ///91?561,--- N)dxy---dey
Both are averages across all data sets that we might have seen.

FUN to look up: Bias-variance decomposition
Useful concepts more generally. These trade off. ..

Bias-Variance Tradeoff

—

O High Bias Low Bias

LE* Low Variance High Variance
-

2

)

.

"8 Test Samp

= e

alF

/

Training Sample

Low High
Model Complexity

Figure from [Hastie, Tibshirani, and Friedman, 2009]

Bias-Variance Tradeoff

-

o High Bias Low Bias

m‘-{ Low Variance High Variance
o

2

+~

=

8 Test Samp

=

o

Not just a cartoon. Can use as a diagnostic.
On x axis could put
 Number of features
* (sortin some meaningful way)
 Model parameter that controls complexity
* Kk In k-nearest neighbour

 number of trees in boosting, random
forests

Training Sample

Low

Model Complexity

e regularization parameters

* Or perhaps you have access to more complex
models

e e.g., haive Bayes versus HMM

Learning Curves

>

error rate

/ training set

>

training set size

Learning Curve Example 1

error rate

~§
L.
LI .
- mmwm

training set

>

training set size

(Q: Why is error going up?) high bias
Test error no longer decreasing
Even training error is too high

Not much difference between training and test error

Learning Curve Example 2

A
g
©
S
5 -
_____________ test set
/ training set
N . . >
training set size

Test error still decreasing high variance

Big gap training and test error

Zero Overfitting Not Desirable

rcvl: test 0.0948 when tr<de vs 0.060832 at best de

rol
de ||
| — e
10 — —
error \
10 .\
v \
best for test error
10° but starting to overfit? \
5 o 5 10
regularization v N
definitely overfitting

http://nlpers.blogspot.co.uk/2015/09/overfitting.html

http://nlpers.blogspot.co.uk/2015/09/overfitting.html

Optimization in the Loop

« Often learning methods work by optimizing some objective function.
 [For example, recall logistic regression

1
1 + exp{—w'x}

ply = 1]x) =

 Jolearnthe weights, we solve

N
max L(w) = Z log p(y = y(i) x = X(i))

W
i=1
data points (xV, y) for iin1... N

 Maybe optimise this using gradient descent
 When this performs poorly, now have two questions

* |s my numerical optimization algorithm performing poorly?

e Oris objective function L not doing what | want?

 (Simple ex: spam filtering with cost-sensitive error)

« (Comes up especially often during research in data science

e Often we introduce new models (== new objective function)

 Which might be harder to optimize

Optimization Example

Example: To optimize

N
max L(w) = Z log p(y = y(i) x = X(i))

i 1=1
Simple choice is batch gradient descent:

N
VwL(w) = > Vy [logp(y =y |x = x)]

1=1

This will be slow it Nis big.

Alternative: stochastic gradient descent
Simplest version: Sample ¢ ~ Uniform({1,2,...,N})

Compute Vi logp(y =y |x = x?) (single instance!)

Update using this gradient.

(this is standard in deep learning, e.g.)

Optimization Diagnostic

e You run a logistic regression spam filter on 100,000 training instances. WZD

« Using batch gradient descent, you get an accuracy of 85%

Not good enough, so you get a larger set of 100,000,000 examples W;GD
e Batch gradient is too slow, so you switch to SGD

 Now you only get 80% accuracy (!1?!7)

Diagnostic: Check the batch training objective
100 000 000

Liw)= > logpy=y"|x=x")

i=1
Compute this for final result of batch GD W, and SGD Wx.

then your SGD procedure is screwed up
(maybe try a different step size?)

This kind of thing happens far more generally.

The Numerical Gradient Check

« (QOften optimization packages require you to implement functions for both
w — L(w) W — Vil
* (although automatic differentiation is becoming more popular)
* |nthat case, check whether

e 'L(w+e€)— L(w)=VuL

 Easy to have a bug in one function but not the other.
e Do this for different settings of w
« MATLAB does this automatically if you ask it to...

Nested Models

e Often complicated models contain simpler models as a special case. For
logistic regression: 1
p(y =1|x) =

1 + exp{—w'x}
 soifw =0, the distribution over yis be uniform. |s that what happens in your
code? If not, bug.

 Another example: a hidden Markov model and a mixture model

p(x,2) = Hp(wt\zt)p(ztfzt—l)

if p(2¢|2¢—1) ignores z;_1, then all z; independent ... mixture model

e Lots of ways to get diagnostics from this:
* Training error of HMM should be strictly better
 Force your HMM code to fit observation distributions only.
Do you get the same distribution as mixture model
* Logistic regression: Numerical gradient check
e Tryitfirst at w=0. It will be easier to debug there.

Pipelines of Predictions

Practical systems use predictors at multiple points

e.g., Finding company mergers from newswire text

Split article into sentences

N

Add part of speech tags . .
/ ———— Syntactic parsing

Recognize company names | /
— Classify merger relationship

Many steps rely on learning, will make errors
Is one step a weak link? Or are errors slowly propagating”?

Debug by replacing intermediate predictions
with gold standard (human annotations)

Overall Advice

e For practical work: Try quick and dirty first. lterate quickly
» Different diagnostics
 Learning curves
* As function of size of training set
* As function of model complexity
e Additionally: number of iterations of learning algorithm
e Optimization diagnostics
 Diagnostics using model nesting
* Breaking chains of predictions
« Sometimes diagnostics require a bit of ingenuity.
 “Trust noone”

e Just because something is true in the maths doesn’'t mean it is in your
code

* |magine how you think the method is probably behaving and check
whether that happens!

 (this holds for research too!)

