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Hello there
I will not present these slides in class.

There are just an outline of topics that will help you to appreciate the next lecture.

To be ready for the next lecture, what you really need: 
• to know how the classifiers represent the decision boundary 
• not the algorithm for how the classifier is learnt 

• (good to know, but not necessary for next lecture)

Next lecture we will discuss how to choose features for learning algorithms.

This means you need to understand a bit about learning algorithms.

These slides: 
• List a few representative algorithms 
• What you should know about them 
• With links to readings to learn about them



List of Algorithms
(with readings)

Why these? 
• practical 
• have different types of decision boundaries 

• so representative for purposes of next lecture

Here are the ones we will “discuss” 
• Linear regression 

• Fitting nonlinear functions by adding basis functions 
• BRML Sec 17.1, 17.2 

• Logistic regression 
• BRML Sec 17.4  
• (just first few pages, don’t worry about training algorithms) 

• k-nearest neighbour 
• BRML Sec 14.1, 14.2 

• Decision trees 
• HTF Sec 9.2 



Key to previous slide

• BRML : Barber. Bayesian Reasoning and Machine Learning. 
CUP, 2012. http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/
pmwiki.php?n=Brml.HomePage 

• HTF : Hastie, Tibshirani, and Friedman. The Elements of 
Statistical Learning 2nd ed, Springer, 2009. http://
statweb.stanford.edu/~tibs/ElemStatLearn/

http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage
http://statweb.stanford.edu/~tibs/ElemStatLearn/


Linear regression

which can be solved easily 
(but I won’t say how)

Let denote the feature vector. Trying to predict y 2 R

Simplest choice a linear function. Define parameters

x 2 Rd

w 2 Rd

ŷ = f(x,w) = w

>
x =

dX

j=1

wjxj

(to keep notation simple assume that always             )xd = 1

x

(1) . . .x(N), y(1), . . . , y(N)

Given a data set

find the best parameters

min
w

NX
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⇣
y(i) �w

>
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Nonlinear regression

exactly the same form as before  
(because x is fixed) 
so still just as easy 

What if we want to learn a nonlinear function?

To find parameters, 
the minimisation problem is now
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Trick: Define new features, e.g., for scalar x, define �(x) = (1, x, x2)>

ŷ = f(x,w) = w

>�(x)

this is still linear in w
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Logistic regression
(a classification method, despite the name)

Linear regression was easy. 
Can we do linear classification too?

x x

x

x

x
x

x

x

o
o

o

o
o

o
o

o
o

o

o

x1

x2

w
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Define a discriminant function

y =

(
1 if f(x,w) � 0

0 otherwise

Then predict using

yields linear decision boundary

Can get class probabilities from this idea, using logistic regression:

p(y = 1|x) = 1

1 + exp{�w

>
x}

(to show decision boundaries same, compute log odds log

p(y = 1|x)
p(y = 0|x)



K-Nearest Neighbour
simple method for classification or regression

1. Look through your training set. Find the K closest points. Call them  
(this is memory-based learning.) 

2. Return the majority vote. 
3. If you want a probability, take the proportion 

Define a distance function between feature vectors D(x,x0)

(the running time of this algorithm is terrible. See IAML for better indexing.)

NK(x)

To classify a new feature vector x

p(y = c|x) = 1

K

X

(y0,x0)2NK(x)

I{y0 = c}



K-Nearest Neighbour
Decision boundaries can be highly nonlinear

The bigger the K, the smoother the boundary

This is nonparametric: the complexity 
of the boundary varies depending on 
the amount of training data
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Decision Trees
Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.2. Partitions and CART. Top right panel
shows a partition of a two-dimensional feature space by
recursive binary splitting, as used in CART, applied to
some fake data. Top left panel shows a general partition
that cannot be obtained from recursive binary splitting.
Bottom left panel shows the tree corresponding to the
partition in the top right panel, and a perspective plot
of the prediction surface appears in the bottom right
panel.

(figure from Hastie, Tibshirani, and Friedman, 2009)

Can be used for classification or regression

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.2. Partitions and CART. Top right panel
shows a partition of a two-dimensional feature space by
recursive binary splitting, as used in CART, applied to
some fake data. Top left panel shows a general partition
that cannot be obtained from recursive binary splitting.
Bottom left panel shows the tree corresponding to the
partition in the top right panel, and a perspective plot
of the prediction surface appears in the bottom right
panel.

Interpretable but tend not to work as well 
as other methods.

X1  t1

X2  t2 X1  t3

X2  t4R1 R2 R3

R4 R5

Can handle discrete or continuous features


