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For an interesting perspective on this difference, see:
Gelman and Unwin. Infovis and statistical graphics: Different goals, different looks
(with discussion). Journal of Computational and Graphical Statistics. 2013

[source: Wikipedia]

Why visualisation?

Goal 1: Have a data set that | want to understand. This is called exploratory

data analysis.

Today’s lecture.

Goal Il: Want to display data (i.e., for publication)

Will save this for later lecture (if time)

Find or display relationships in the data

This is a prelude to model building (what is most important to model?)

Major goal is inter-ocular impact

Univariate data
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Summaries

Mean 27.7 Min 0.00
Std Dev 9.5 1Q 247
Median 28.0
3Q 33.6
Max 57.3
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Outliers in histograms
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UCI ML repository says no missing data
(well, for 20 years it did)

[Source: Padhraic Smyth]
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these three have same summary statistics!

Class-Conditional Histograms
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Alternative: Box plot
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Diabetes?

Maybe for only 2 groups, graphs not necessary.
For more visual comparisons, can be helpful.



Effect of bin size Effect of bin size
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Bivariate data

Dangers of correlation
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[Anscombe, 1973]

Numerical bivariate summaries

Data are (z1,11), (%2, y2), ... (zN,YN)

Sample covariance:
1 N

Sy = m Z(yl - g)(xl - j)

=1

Sample correlation:

Pzy = ;L;y
Scatterplots

where as before




Token score after attack

Colour in Scatterplots
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Entire plot: one email
Axes: “Spam score”

Colour: Whether token was part
of an attack on the spam filter

[Nelson et al, 2008]

Overplotting

samples from bivariate normal

also: notice the axes!

100,000 data points

Token score after attack

Colour in Scatterplots
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For our purposes,
note:

e Use of colour to add
a categorical variable

Without this colour
would not have seen
these two outliers

® Use of y=xline to
add the eye

[Nelson et al, 2008]

96,000 bank loan applicants
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[Source: Hand, Manila, and Smyth]



Fitted line

Barack Obama Favorable/Unfavorable Rating
Latest Poll: 01/10/2011

To fix overplotting, could consider: © TrousT I
* Jittering points 63
* Subsampling points (i.e., plot only 10%) 5‘
* Averaging (if this makes sense) 39
* Add trend lines (e.g., quantile lines) .

This fit is from loess (local linear regression).

Time Series Transformations

Examples Visualization tricks include:

* Financial data + Smoothing

*  Network traffic + (running mean, median) Consider powers, 10gs.

* Energy usage * Repeated multiples Occasionally reciprocals (e.g., rates).

¢ Human traffic

+  Building occupancy Also square root
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[Oh et al, 2006], figure from [Xuan and Murphy, 2007]



Example Transformation

Three-Dimensional Data

Log,, Brain Weight (log grams)

Why log log here? Hint: Imagine a spherical cow

[Source: William Cleveland, Visualizing Data]

Generally hard

3-D plots are not usually useful
Usually better to use colour on a 2-D plot

Or show multiple 2D plots for each value of third

variable

Log,, Body Weight (log grams)

Wait, what if you have categorical data?

Tools here include:

e Colour

» Contingency tables

* Multiple plots (e.g., class-conditional histograms)

High-Dimensional Data

Two main options:

* Project the data down to 2-D

Many techniques

¢ Principal Components Analysis (IAML, MLPR)

* Multidimensional scaling

¢ Modern nonlinear methods: t-SNE, LLE, Isomap, Eigenmaps

Problem: Sometimes this will obscure high-D structure and nonlinear
structure

* Another option: Scatterplot matrix (see next)
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Important:
Scales must be matched

What are you looking for?

* Anomalies. If something looks weird, figure out why. It could be an error in
your data.

Learn from your data but do not trust it! (Not completely.)

* Relationships. Hypothesis-based visualization. What relationships do you

expect to exist? Can you see them?

e Use visualization to inform models and vice versa

“really” nonlinear

* Fancy 3D graphs ... meh

e.g., Can help with feature construction, e.g., whether a relationship is

* These techniques also useful for the outputs of learning!

Scatterplot matrix
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If you really like this stuff

* Tukey, Exploratory Data Analysis
 Bill Cleveland, Visualizing Data

e Edward Tufte, all books




