Abstraction and generalization in
causal learning



Causal learning



Causal learning

Prediction:
 What happens if | push this button?

Explanation and diagnosis:
e What caused the noise downstairs?

* Why do some objects float in water?

Planning and achieving goals:
 How can | stop killing my plants?




Causal learning

Scientific discovery:
* What causes disease?
* Discovering new planets

e Genetic inheritance



Causal learning

It’s difficult!
e Many variables

e Coincidence/spurious covariation

e Causes and effects can relate in many

Wda yS : Global Average Temperature vs. Number of Pirates
o 16.5
G 2000
A causes B, ¢ 160 —
T °
= 155
o 1940
B causes A, : P e
S 1880
© 1860 ®
common causes, ST T,
. . <G>z) 14.0
intereractions, ... = ...
Q .
o
O 130
35000 45000 20000 15000 5000 400 17

Number of Pirates (Approximate)

(wikimedia commons: RedAndr)



Inductive biases

Illness

“Squad Helps Dog

f(x)
Bite Victim” (X |

Recovery

(Cooper, 1980; Geman Bienenstock & Doursat, 1992)



Questions

What representations and inductive biases allow
us to generalize?

Where do they come from?



Questions

How do we discover new concepts or
abstractions, and refine the ones we have?

e Discovering and reasoning about hidden variables

e What kinds of causal relationships are likely



Methods

Predictions from hierarchical Bayesian models, e.g.:
e functional causal models;
e mixtures of Gaussian process experts;
e probabilistic grammars/programs

(Pearl, 2000; Rasmussen & Gharamani, 2002; Meeds & Osindero, 2006; Goodman et al. 2008)



Methods

Experiments: surveys, demonstrations,
classification and prediction tasks, and games
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Example experiment

Can people learn about forms of relationships
using one set of variables and use that knowledge
when reasoning about new variables?



Example experiment
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Example experiment

Training: See unlabelled event data, identify
causal structure behind events.

Training —

Condition 1: Disjunctive-cause (OR)
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Example experiment

Test: See ambiguous data involving new objects.
Infer causal structure by generalizing from
training.
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Developmental differences

If our experiences today shape our

interpretation of tomorrow’s data:

e Generalizations should change over
development

e Children will be more sensitive to atypical
data than adults

(Lucas et al., 2014)



Results

e Both adults and children

generalize from training.

e Children show greater
flexibility.

e Adults have stronger a
priori commitments.
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Example: continuous relationships

E.g., causes and effects of climate change
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A Bayesian model explains diverse

phenomena
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...and more:
Iterated learning;
Knowledge partitioning

(Delosh, Busemeyer, & McDaniel, 1997; Kalish, Lewandowsky, & Kruschke, 2004; Byun, 1995; Kalish, Griffiths, & Lewandowsky, 2007)




Extrapolating in higher-dimensional
- spaces
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Other projects

Compositions of programs as priors
Preference understanding

Using statistical “concidences” to discover
hidden causes

Temporal information and causal inference

Counterfactual reasoning



