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Cognitive Science

The aim of cognitive science is to figure out how the mind works.
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Cognitive scientists do this by studying a range of cognitive processes:

vision;

auditory processing;

language;

motor control.

Here, we will focus on vision and language.
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Visual Attention
Language Processing

Eye-tracking

By recording their eye-movements, we can study how humans process
linguistic or visual information.

Frank Keller Data in Cognitive Science 5



Introduction
Eye-tracking Data

Applications

Visual Attention
Language Processing

Eye-tracking

By recording their eye-movements, we can study how humans process
linguistic or visual information.

Frank Keller Data in Cognitive Science 5



Introduction
Eye-tracking Data

Applications

Visual Attention
Language Processing

Eye-tracking

By recording their eye-movements, we can study how humans process
linguistic or visual information.

Frank Keller Data in Cognitive Science 5



Introduction
Eye-tracking Data

Applications

Visual Attention
Language Processing

Visual Attention

When people view an image, their eyes remains static for short periods of
time (fixation), and then jump to a new location (saccade).

More fixations on salient regions, out-of-context objects, animate objects,
task-relevant areas.
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Language Processing

When people read text, they also make fixations and saccades:

words that are longer or more frequent are fixated for longer;

syntactic ambiguity leads to re-reading (reverse saccades);

fixation duration also varies with semantic plausibility, sentence and
discourse context, reading task.

We can use eye-tracking data to build probabilistic parsing models that
simulate human language processing.

Human parsing is word-by-word incremental. Example:

(1) Banks will take measures.
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Human Parsing

Incremental TAG model proposed by Demberg et al. (2013):

NP

NNS

Banks

S1

VP1NP1

NNS

Banks

{A0,A1,
A2,A3}

S1

VP1

VP1

{AM-MOD}
MD

will

NP1

NNS

Banks

{A0,A1,
A2,A3}

1. subst 2. adj 3. verif

1. NP → 〈{A0,A1,A2,A3},Banks,nil〉

2. VP → 〈AM-MOD,will,nil〉
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Incremental TAG model proposed by Demberg et al. (2013):
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4. NP → 〈A1,measures,take〉
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Predicting Reading Times
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Object Detection

We can use eye-tracking data for a classic computer vision task:
object class detection.

Object detectors are trained on images that are manually annotated with
bounding boxed around the objects.

Frank Keller Data in Cognitive Science 11
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Object Detection

Alternative: infer bounding boxes from eye-tracking data (Papadopoulos
et al. 2014):

⇒

much faster: 1 s per image vs. 22 s for BB drawing;

no need for trained annotators, guidelines, etc.
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From Fixations to Bounding Boxes
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From Fixations to Bounding Boxes

Evaluation using CorLoc (intersection over union > 0.5):
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Other Topics in Cognitive Data Science

Build an incremental semantic role labeler which can be evaluated
against eye-tracking data (Konstas et al. 2014);

use synchronous grammars to align image structure with linguistic
structure, e.g., for image description (Elliott & Keller 2013);

build sequence models (e.g., based on HMMs) that human predict
fixation behavior, either for images or for text;

use eye-tracking data to improve unsupervised PoS tagging or
parsing models.
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