Introduction to
Research in
Data

Science

October 23, 2014
James Cheney









Wicked
Data

wicked problem, n. a problem that is difficult or
impossible to solve because of incomplete,
contradictory, and changing requirements that are
often difficult to recognize



Research questions:
Language-integrated query

HealthCare.gov ETN Get Insurance  Login | Espafiol |

Individuals & Families Small Businesses All Topics v ;‘ SEARCH
;select * from users
Improving The Health Insurance Marketplace online app SRS TSR o] (=55

approximately 1 a.m. to 5 a.m. EST daily while™ ;
HealthCare.gov Additional down times may be possible as we ;show tables; --

WLEECHEGRUEICELRUTIELCGIEMEERY - premium payments
during these hours.
8 :select * from *;

; grant

Find health 1 8 : rehabilitative and habilitative
| : show tables
coverage that ,

How can we (safely/securely) program
multiple layers (database, browser, regular PL)?



LINQ example

tasks
(emp tsk )
“Alex” “build”
employees “Bert” “build”
( dpt name salary ) "Cora” “ab§tract"
m 5 o 5 “Cora” “build”
Product Alex 40,000 “Cora” feall”
“Product” “Bert” 60,000 “Cora” “dissemble”
“Research” “Cora” 50,000 “Cora” tenthuse”
“Research” “Drew” 70,000 “Drew” “bstract”
“Sales” “Erik” 200,000 “Drew” venthuse”
“Sales” “Fred” 95,000 Erik heall”
. “Sales Gina 155,000 ) YE ik “enthuse”
“Fred” “call”
“Gina” “call”
. “Gina” “dissemble” )

qUOtatlon let rec canDoAll(tsks) =
match tsks with
<@ @> [] -> <@ fun name -> true ©>

| tsk::tsks’ -> <@ fun name ->
(%icanDo) name tsk && (%canDoAll tsks’) name @>
query {
for x in employees

antiquote where ((YcanDoAll ["build","call"]) x.name)
yield {name=x.name} }
(o)
(%)




LINQ example

tasks
(emp tsk )
“Alex” “build”
employees “Bert” “build”
( dpt name salary ) ‘Cora’ “ab§tract"
m 5 o 5 “Cora” “build”
Product Alex 40,000 “Cora” feall”
“Product” “Bert” 60,000 “Cora” “dissemble”
“Research” “Cora” 50,000 “Cora” tenthuse”
“Research” “Drew” 70,000 “Drew” “bstract”
“Sales” “Erik” 200,000 “Drew” venthuse”
“Sales” “Fred” 95,000 YE ik heall”
_ “Sales” “Gina” 155,000 ) SEfik” " "
ri enthuse n am e
“Fred” “call”
“Gina” “call”
“Gina” “dissemble”

* ’ Cora

qUOtatlon let rec canDoAll(tsks) =
match tsks with
<@ @> [] -> <@ fun name -> true 0>

| tsk::tsks’ -> <@ fun name ->
(%icanDo) name tsk && (%canDoAll tsks’) name @>
query {
for x in employees

antiquote where ((YcanDoAll ["build","call"]) x.name)
yield {name=x.name} }
(o)
(%)




Example

let elem = <@ fun x xs ->
query { for y in xs
exists (y=x) } @>
let canDo = <@ fun name tsk ->
(%elem) tsk (for t in tasks
where (t.emp = name)
yield t.tsk ) @>
query { for x in employees
where ((%canDo) x.name "build")
yield {name = x.name}




Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
1 (fun x xs ->
query { for y in xs
exists (y=x) })
tsk (for t in tasks
q where (t.emp = name)
yield t.tsk ) @>
query { for x in employees
— where ((%canDo) x.name "build")
yield {name = x.name}




Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
l L £
query { for x in employees
where (
(fun x xs ->
q query { for y in xs
exists (y=x) })
qu
) X.name "build")
yield {name = x.name}




Example

let elem = <@ fun X xs ->

~

qu

let canDo = <@ fun name tsk ->

L £ =

query { for x in employees

where ((fun name tsk -> <<:

(fun x xs ->
query { for y in xs
exists (y=x) })
tsk (for t in tasks
where (t.emp = name)
yield t.tsk )) x.name "build")
yield {name = x.name}

N

-~

o

2N

This is what LINQ

normally sees.

J

X (failure or query avalanche)



Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
l L £
query { for x in employees
where (
(fun x xs ->
q query { for y in xs
exists (y=x) })
qu
) X.name "build")
yield {name = x.name}




Example

let elem = <@ fun X xs ->

~

qu

let canDo = <@ fun name tsk ->

L £

query { for x in employees
where (

query { for x in employees
where (
query { for y in

exists (y= ) }
) X.name "build")

yield {name = x.name}




Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
l L £
query { for x in employees
where (
query { for x in employees
q where (
query { for x in employees
qu where (query { for y in
X .name
exists (y= "build") } )

yield {name = x.name}




Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
l L £
query { for x in employees
where (
query { for x in employees
q where (
query { for x in employees
qu
— query { for x in employees
where (query {
X .name
exists (t.tsk = "build") } )

yield {name = x.name}




Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
l L £
query { for x in employees
where (
query { for x in employees
q where (
query { for x in employees
qu
— query { for x in employees
where (query {
X .name
exists (t.tsk = "build") } )

yield {name = x.name}

SELECT xX.name
FROM employees x
WHERE EXISTS (SELECT t.tsk FROM tasks t WHERE t.emp = xX.name)




Research questions:
Data transformation

f R

e How do I make use of data in format X with tools that expect Y?

e What if some of X is missing or Y requires information that X
doesn't provide?



Bidirectional
transtormations

e Can synchronize two data sources using functions:
e get:A—B,put:A—-=B—A

e satistying laws: put(get a) = a, get(putab) = b
e generalizing view updates in databases

e Current projects:

e bidirectional transformations with effects
e extending classical framework to allow monadic effects
o (eg.put:A—B—>MA)

e Iinvestigating "least change" principles

e give change to one side, minimize the "damage" done to the other side



Research questions:
Provenance

SCIENTIFIC PUBLISHING

A Scientist’s Nightmare: Software
Problem Leads to Five Retractions

Until recently, Geoftrey Chang’s career was on 2001 Science paper, which described the struc-
a trajectory most young scientists only dream  ture of a protemn called MsbA, 1solated from the
about. In 1999, at the age of 28, the protein  bacterium Escherichia coli. MsbA belongs to a
crystallographer landed a faculty position at  huge and ancient family of molecules that use
the prestigious Scripps Research Institute in ~ energy from adenosine triphosphate to trans-
San Diego, California. The next year, ina cer-  port molecules across cell membranes. These
emony at the White House, Chang receiveda  so-called ABC transporters perform many

Science 22 December 2006:
Vol. 314 no. 5807 pp. 1856-1857

e How can we trust the results of DOI: 10.1126/science.314.5807.1856
e large programs (P(bugs) = 1.0)
e running on large infrastructure where failure during run is expected

e over large amounts of uncertain/noisy data ?



Foundations for trust
and accountability

e Provenance and annotation

e Understanding derivation process / history of data

e Seems to mean different things in different settings:
e to DB people: semiring interpretations of relational algebra
e to PL/security people: information flow, dependency tracking

e to scientists: version management / smart replay / quality control for
data (and derived results)

e Are we solving the right problem(s)?

e Many ad hoc solutions; few specifications or "correct”" implementations

e My view: mathematical foundations/attempts to specify
problems essential to progress



Mathematical foundations
of provenance

e Dependency: understanding how outputs depend on inputs (see also:
noninterference in security)

e '"if I change this part, what parts of output will/may change?"

e Explanation: Galois connections between "parts” of input and output

e '"what part of input was needed to force this part of the output to be 42?"

e View maintenance/incremental computation

e '"if I change this part, how can I recompute the output most efficiently?"

e Bidirectionality/view update

e 'if I want to change this part of the output, what input changes could do this?"
e justifications/witnesses (why-provenance)
e reasoning about knowledge/uncertainty (multi-modal logic)

e mathematical modeling of causality (see also: Bayes nets)



Summary

e My work explores the interaction between language
design, semantics, and data management.

e Emphasis on applying formal foundations

e particularly concepts from programming language semantics

e toimprove understanding of, address "wicked
problems" coming from scientists working with data

e Programmability, data versioning/synchronization,
provenance/accountability

e Relevant to "science data", though maybe not what people
currently think of as mainstream "data science”



