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Wicked
Data

wicked problem, n. a problem that is difficult or
impossible to solve because of incomplete,
contradictory, and changing requirements that are
often difficult to recognize



Research questions:
Language-integrated query
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How can we (safely/securely) program
multiple layers (database, browser, regular PL)?



LINQ example

tasks
(emp tsk )
“Alex” “build”
employees “Bert” “build”
( dpt name salary ) "Cora” “ab§tract"
m 5 o 5 “Cora” “build”
Product Alex 40,000 “Cora” feall”
“Product” “Bert” 60,000 “Cora” “dissemble”
“Research” “Cora” 50,000 “Cora” tenthuse”
“Research” “Drew” 70,000 “Drew” “bstract”
“Sales” “Erik” 200,000 “Drew” venthuse”
“Sales” “Fred” 95,000 Erik heall”
. “Sales Gina 155,000 ) YE ik “enthuse”
“Fred” “call”
“Gina” “call”
. “Gina” “dissemble” )

qUOtatlon let rec canDoAll(tsks) =
match tsks with
<@ @> [] -> <@ fun name -> true ©>

| tsk::tsks’ -> <@ fun name ->
(%icanDo) name tsk && (%canDoAll tsks’) name @>
query {
for x in employees

antiquote where ((YcanDoAll ["build","call"]) x.name)
yield {name=x.name} }
(o)
(%)
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Example

let elem = <@ fun x xs ->
query { for y in xs
exists (y=x) } @>
let canDo = <@ fun name tsk ->
(%elem) tsk (for t in tasks
where (t.emp = name)
yield t.tsk ) @>
query { for x in employees
where ((%canDo) x.name "build")
yield {name = x.name}
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Example

let elem = <@ fun X xs ->

~
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SELECT xX.name
FROM employees x
WHERE EXISTS (SELECT t.tsk FROM tasks t WHERE t.emp = xX.name)




Research questions:
Data transformation

f R

e How do I make use of data in format X with tools that expect Y?

e What if some of X is missing or Y requires information that X
doesn't provide?



Bidirectional
transtormations

e Can synchronize two data sources using functions:
e get:A—B,put:A—-=B—A

e satistying laws: put(get a) = a, get(putab) = b
e generalizing view updates in databases

e Current projects:

e bidirectional transformations with effects
e extending classical framework to allow monadic effects
o (eg.put:A—B—>MA)

e Iinvestigating "least change" principles

e give change to one side, minimize the "damage" done to the other side



Research questions:
Provenance

SCIENTIFIC PUBLISHING

A Scientist’s Nightmare: Software
Problem Leads to Five Retractions

Until recently, Geoftrey Chang’s career was on 2001 Science paper, which described the struc-
a trajectory most young scientists only dream  ture of a protemn called MsbA, 1solated from the
about. In 1999, at the age of 28, the protein  bacterium Escherichia coli. MsbA belongs to a
crystallographer landed a faculty position at  huge and ancient family of molecules that use
the prestigious Scripps Research Institute in ~ energy from adenosine triphosphate to trans-
San Diego, California. The next year, ina cer-  port molecules across cell membranes. These
emony at the White House, Chang receiveda  so-called ABC transporters perform many

Science 22 December 2006:
Vol. 314 no. 5807 pp. 1856-1857

e How can we trust the results of DOI: 10.1126/science.314.5807.1856
e large programs (P(bugs) = 1.0)
e running on large infrastructure where failure during run is expected

e over large amounts of uncertain/noisy data ?



Foundations for trust
and accountability

e Provenance and annotation

e Understanding derivation process / history of data

e Seems to mean different things in different settings:
e to DB people: semiring interpretations of relational algebra
e to PL/security people: information flow, dependency tracking

e to scientists: version management / smart replay / quality control for
data (and derived results)

e Are we solving the right problem(s)?

e Many ad hoc solutions; few specifications or "correct”" implementations

e My view: mathematical foundations/attempts to specify
problems essential to progress



Mathematical foundations
of provenance

e Dependency: understanding how outputs depend on inputs (see also:
noninterference in security)

e '"if I change this part, what parts of output will/may change?"

e Explanation: Galois connections between "parts” of input and output

e '"what part of input was needed to force this part of the output to be 42?"

e View maintenance/incremental computation

e '"if I change this part, how can I recompute the output most efficiently?"

e Bidirectionality/view update

e 'if I want to change this part of the output, what input changes could do this?"
e justifications/witnesses (why-provenance)
e reasoning about knowledge/uncertainty (multi-modal logic)

e mathematical modeling of causality (see also: Bayes nets)



Summary

e My work explores the interaction between language
design, semantics, and data management.

e Emphasis on applying formal foundations

e particularly concepts from programming language semantics

e toimprove understanding of, address "wicked
problems" coming from scientists working with data

e Programmability, data versioning/synchronization,
provenance/accountability

e Relevant to "science data", though maybe not what people
currently think of as mainstream "data science”



