
Efficient statistical inference
for high dimensional and nonparametric models

Natalia Bochkina

School of Mathematics and Maxwell Institute

N.Bochkina@ed.ac.uk

13 October 2014

Natalia Bochkina (School of Mathematics) High dimensional and nonparametric models 13 October 2014 1 / 8



High dimensional data and modern statistics

Availability of noisy high dimensional data from biology and medicine (genomics,
genetics, tomography, brain imaging), ecology, social networks and other data (netflix
problem) triggered development of “high p small n” paradigm in statistics where the
number of unknowns p is higher than the sample size n.

Classical statistical inference works if p is fixed as n→∞.
Current data has p →∞ as n→∞, often p/n→ const or p/n→∞.

To ensure consistent and efficient inference, this required development of novel
statistical methods, often embedding a priori information elicited from experts.

Main statistical methods: penalised likelihood and Bayesian models

Computational challenges: to implement the methods efficiently for a large
number of unknowns

Mathematical challenges: to come up with statistical inference methods that
guarantee consistency and efficiency

It is often of interest to recover structure in these types of data.
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Statistical inference for high dimensional data

Likelihood: Y = (Y1, . . . ,Yn) ∼ f (Y | θ), for some θ ∈ Θ ⊆ Rp, p � n.
Aim: to estimate unknown θ, its confidence region, make decisions.

Penalised log likelihood estimator:

θ̂ = arg min
θ̂

[
− log p(Y | θ̂) + pen(θ̂)

]
where the penalty reflects desirable
properties of the solution, e.g. sparsity.
Problems:

Construction of confidence regions
for θ̂ and other decision making.
Assumptions are often not verifiable.

Bayesian model:
Given prior p(θ), posterior distribution is

p(θ | Y) =
f (Y | θ) p(θ)∫

Θ
f (Y | θ) p(θ) d θ

,

θ̂ = arg max
θ̂

E
(

d(θ̂, θ) | Y
)

given a distance d on Θ. Bayesian
analogues of a confidence region and
decision making can be constructed.
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Challenges

Computational: construct a fast algorithm to compute θ̂ (and p(θ | Y)).

Mathematical: choose a penalty pen(θ) / prior p(θ) to ensure that θ̂ is consistent
and efficient, i.e.

E[d(θ̂, θ)]2 → 0 as n→∞,

at the best possible rate.

For Bayesian inference, efficiency is related to local concentration of the
posterior distribution around the true value of θ (Bernstein-von Mises theorem).
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Research problems

Modelling and decision making for genomic data, including model checks
Bochkina et al (2006, 2007, 2010)

Modelling dependence structure in genomics data and data integration
A. Caballe, Bochkina, C.-D. Meyer

Statistical inference for compound sparse high dimensional problems
Bochkina & Ritov (2011)

Concentration of posterior distribution (Bernstein – von Mises theorem) for
nonregular and misspecified models, with application to tomography
Bochkina and Green (2014), Bochkina (2013)

Concentration of posterior distribution for semiparametric models with functional
nuisance parameter
Bochkina and Rousseau

Adjusting Bayesian inference for approximated models
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Concentration of posterior distribution (Bernstein–von Mises theorem)

For correctly specified regular models, as
n→∞,

I1/2
θtrue

(θ − θtrue) | Y ∼ Np(∆n, Ip)

where Iθtrue is Fisher information:

Iθtrue = Eθtrue

(
∂ log f (Y | θtrue)

∂θ

)2

.

That is, Bayesian inference in
asymptotically optimal in frequentist
sense.
For iid models, Iθtrue = niθtrue leading to
standard

√
n parametric convergence

rate.

For misspecified regular models, where
ftrue(Y) /∈ {f (Y | θ), θ ∈ Θ},

V 1/2
true (θ − θtrue) | Y ∼ Np(∆n, Ip)

where

Vtrue = Etrue

(
∂ log f (Y | θ?)

∂θ

)2

,

and θ? corresponds to the model f (Y | θ?)
closest to the true one ftrue(Y) in
Kullback-Leibler distance.

For nonregular models, where θtrue or θ? are on the boundary of Θ,

n(θ − θ?)j | Y ∼ Γ(α, bj ) as n→∞

for some directions j where α is parameter of the prior distribution.
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Application to nonparametric and inverse problems, tomography

Density estimation: (Y1, . . . ,Yn) is a
sample from density f .
Nonparametric regression:
(Y1, . . . ,Yn) are noisy observations
of f at points (t1, . . . , tn).
Inverse problem:
(Y1, . . . ,Yn) are noisy observations
of A(f ) (indirect observations of f ) at
points (t1, . . . , tn).

Density estimation

ys
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Aim: estimate unknown function f .

Inverse problem, tomography (plots by P.J.Green)
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Adjusting Bayesian inference for approximated models

For complex Bayesian models, approximate models are often fitted to speed up the
computation.

They often underestimate uncertainty in the posterior distribution.

The idea is

to view approximate models as misspecified models

to use BvM for misspecified models to adjust the inference
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