
Probabilistic Machine Learning
(theory and practice)

Charles Sutton
Introduction to Research in Data Science

University of Edinburgh

• Analyzing computer programs
• Practical data analysis
• Home energy demand
• Computer security

New applications

New methodology • New model types
• Inference algorithms

 (e.g., high dimensional, streaming)
• Approximate learning methods

• Finding latent structure in data
• Predicting many interdependent variables

Predictive tasks

Hence: Probabilistic modelling

x1

x2 x3

x4

p1

p1(ϵ)

p2

p2(ϵ)

p3

p3(ϵ)

Continuous Relaxations for Discrete
Hamiltonian Monte Carlo

Yichuan Zhang, Charles Sutton, Amos Storkey, Zoubin Ghahramani
University of Edinburgh, University of Cambridge

Hamiltonian Monte Carlo for Discrete Spaces

[Zhang et al, NIPS 2012]

The Gaussian Integral Trick

p(x) /
Y

i

✓
1 + exp

⇢
ai + xi �

di

2

�◆
exp

⇢
�1

2

x

T
(W +D)

�1
x

�

p(s)

s s

x x

Original MRF

[MS10; HKP91] Current Approach

s

x

General A A = ⇤�1/2V T A = I

p(x, s) / exp

⇢
�1

2

x

T
(W +D)

�1
x+ (a� 1

2

d)

T
s

�

xs

 are independentsisj

p(x|s) = 1

Z
exp

⇢
a

T
s+

1

2

a

TWa

�
p(s) =

1

Z
exp

⇢
aT s+

1

2

aTWa

�

Marginalize , we have s
[MS10]

[MS10] James Martens and Ilya Sutskever. Parallelizable sampling of markov random fields. In Conference on Artificial Intelligence and Statistics (AISTATS), 2010

[HKP91] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory of Neural Computation. Perseus Books, 1991

Syntactic Idioms in Code
...
if (c != null) {
try {
if (c.moveToFirst()) {
number = c.getString(

c.getColumnIndex(
phoneColumn));

}
} finally {
c.close();
}
}
...

IfStatement

expression:

c!=null

then:Block

TryStatement

body:IfStatement

expr:MethodInvocation

expr:var%android.database.Cursor%

name:c

name:moveToFirst

then:Block

number = c.getString(c.getColumnIndex(phoneColumn));

finally:Block

ExpressionStatement

MethodInvocation

expr:var%android.database.Cursor%

name:c

name:close

E ! E

T

F * F

(E

T + T

)

(prob 0.5)

(d)
(a)

try {
if ($(Cursor).moveToFirst()) {
$BODY$

}
} finally {
$(Cursor).close();

}

(b) (c)

Figure 1: Example of code idiom extraction: (a) A snippet from PhoneNumberUtils in android.telephony. (b) A common idiom when
handling android.database.Cursor objects, successfully mined by Haggis. (c) Eclipse JDT’s AST for the code in (a). Shaded nodes are
those included in the idiom. (d) An example of a pTSG rule for a simple expression grammar. See text for more details.

types of patterns that are inferred are essentially sequences, or some-
times finite state machines, of method invocations. Although API
patterns are valuable, idiom mining is markedly di↵erent, because
idioms have syntactic structure. For example, current API mining
approaches cannot find patterns such as a library with a Tree class
that requires special iteration logic, or a Java library that requires the
developer to free resources within a finally block. This is exactly
the type of pattern that Haggis identifies.

3. MINING CODE IDIOMS
In this section, we introduce the technical framework that is

required for Haggis,3 our proposed method for the idiom mining
problem. At a high level, we approach the problem of mining source
code idioms as that of inferring of commonly reoccurring fragments
in ASTs. We apply recent advanced techniques from statistical NLP
[10, 42], but we need to explain them in some detail to justify why
they are appropriate for this software engineering task, and why
simpler methods would not be e↵ective.

We will build up step by step. First, we will describe our represen-
tation of idioms. In particular, we describe a family of probability
distributions over ASTs which are called probabilistic tree substi-
tution grammars (pTSGs). A pTSG is essentially a probabilistic
context free grammar (PCFG) with the addition of special rules that
insert a tree fragment all at once.

Second, we describe how we discover idioms. We do this by
learning a pTSG that best explains a large quantity of existing
source code. We consider as idioms the tree fragments that appear
in the learned pTSG. We learn the pTSG using a powerful general
framework called nonparametric Bayesian methods. Nonparametric
Bayes provides a principled theoretical framework for automatically
inferring how complex a model should be from data. Every time we
add a new fragment rule to the pTSG, we are adding a new parameter
to the model (the rule’s probability of appearing), and the number
of potential fragments that we could add is infinite. This creates a
3Holistic, Automatic Gathering of Grammatical Idioms from Soft-
ware.

risk that by adding a large number a fragments we could construct a
model with too many parameters, which would be likely to overfit
the training data. Nonparametric Bayesian methods provide a way
to tradeo↵ the model’s fit to the training set with the model’s size
when the maximum size of the model is unbounded.

It is also worth explaining why we employ probabilistic models
here, rather than a standard deterministic CFG. Probabilities provide
a natural quantitative measure of the quality of a proposed idiom:
A proposed idiom is worthwhile only if, when we include it into
a pTSG, it increases the probability that the pTSG assigns to the
training corpus. This encourages the method to avoid identifying
idioms that are frequent but boring.

At first, it may seem odd that we apply grammar learning methods
here, when of course the grammar of the programming language is
already known. We clarify that our aim is not to re-learn the known
grammar, but rather to learn probability distributions over parse
trees from the known grammar. These distributions will represent
which rules from the grammar are used more often, and, crucially,
which sets of rules tend to be used contiguously.

3.1 Probabilistic Grammars
A probabilistic context free grammar (PCFG) is a simple way

to define a distribution over the strings of a context-free language.
A PCFG is defined as G = (⌃, N, S,R,⇧), where ⌃ is a set of
terminal symbols, N a set of nonterminals, S 2 N is the root
nonterminal symbol and R is a set of productions. Each production
in R has the form X ! Y , where X 2 N and Y 2 (⌃[N)

⇤. The
set ⇧ is a set of distributions P (r|c), where c 2 N is a non-terminal,
and r 2 R is a rule with c on its left-hand side. To sample a tree
from a PCFG, we recursively expand the tree, beginning at S, and
each time we add a non-terminal c to the tree, we expand c using
a production r that is sampled from the corresponding distribution
P (r|c). The probability of generating a particular tree T from this
procedure is the product over all rules that are required to generate
T . The probability P (x) of a string x 2 ⌃

⇤ is the sum of the
probabilities of the trees T that yield x, that is, we simply consider
P (x) as a marginal distribution of P (T).

Allamanis and Sutton, FSE 2014

Example Idioms

Allamanis and Sutton, FSE 2014

From: Nonparametric Bayesian Tree Substitution Grammar!
 [Post and Gildea, 2009; Cohn et al, 2010]

channel=connection.
createChannel();

(a)

Elements $name=$(Element).
select($StringLit);

(b)

Transaction tx=ConnectionFactory.
getDatabase().beginTx();

(c)

catch (Exception e){
$(Transaction).failure();
}

(d)

SearchSourceBuilder builder=
getQueryTranslator().build(
$(ContentIndexQuery));

(e)

LocationManager $name =
(LocationManager)getSystemService(
Context.LOCATION_SERVICE);

(f)

Location.distanceBetween(
$(Location).getLatitude(),
$(Location).getLongitude(),
$...);

(g)

try{
$BODY$
}finally{
$(RevWalk).release();
}

(h)

try{
Node $name=$methodInvoc();
$BODY$
}finally{
$(Transaction).finish();
}

(i)

ConnectionFactory factory =
new ConnectionFactory();
$methodInvoc();
Connection connection =
factory.newConnection();

(j)

while ($(ModelNode) != null){
if ($(ModelNode) == limit)
break;
$ifstatement
$(ModelNode)=$(ModelNode)
.getParentModelNode();

}

(k)

Document doc=Jsoup.connect(URL).
userAgent("Mozilla").
header("Accept","text/html").
get();

(l)

if ($(Connection) != null){
try{
$(Connection).close();
}catch (Exception ignore){}
}

(m)

Traverser traverser
=$(Node).traverse();

for (Node $name : traverser){
$BODY$

}

(n)

Toast.makeText(this,
$stringLit,Toast.LENGTH_SHORT)
.show()

(o)

try{
Session session
=HibernateUtil
.currentSession();

$BODY$
}catch (HibernateException e){
throw new DaoException(e);
}

(p)

FileSystem $name
=FileSystem.get(
$(Path).toUri(),conf);

(q)

(token=$(XContentParser)
.nextToken())
!= XContentParser
.Token.END_OBJECT

(r)

Figure 6: Top cross-project idioms for Library projects (Figure 4). Here we include idioms that appear in the test set files. We rank them
by the number of distinct files they appear in and restrict into presenting idioms that contain at least one library-specific (i.e. API-specific)
identifier. The special notation $(TypeName) denotes the presence of a variable whose name is undefined. $BODY$ denotes a user-defined
code block of one or more statements, $name a freely defined (variable) name, $methodInvoc a single method invocation statement and
$ifstatement a single if statement. All the idioms have been automatically identified by Haggis

for (Iterator iter=$methodInvoc; iter.hasNext();)
{$BODY$}

(a) Iterate through the elements of an Iterator.

private final static Log $name=
LogFactory.getLog($type.class);

(b) Creating a logger for a class.

public static final String $name = $StringLit;

(c) Defining a constant String.

while (($(String) = $(BufferedReader).
readLine()) != null) {$BODY$}

(d) Looping through lines from a BufferedReader.

Figure 7: Sample language-specific idioms. $StringLit de-
notes a user-defined string literal, $name a (variable) name,
$methodInvoc a method invocation statement, $ifstatement
an if statement and $BODY$ a code block.

Name Precision Coverage Avg Size
(%) (%) (#Nodes)

Haggis 8.5 ±3.2 23.5 ±13.2 15.0 ±2.1

nmin = 5, cmin = 2

Li
b
r
a
r
y Haggis 16.9 ±10.1 2.8 ±3.0 27.9 ±8.6

nmin = 20, cmin = 25

Deckard 0.9 ±1.3 4.1 ±5.2 24.6 ±15.0

minToks=10, stride=2, sim=1

Pr
o
j
e
c
t
s Haggis 14.4 ±9.4 30.3 ±12.5 15.5 ±3.1

nmin = 5, cmin = 2

Haggis 29.9 ±19.4 3.1 ±2.6 25.3 ±3.5

nmin = 20, cmin = 25

Figure 8: Average and standard deviation of performance in Library
test set. Standard deviation across projects.

Possible project directions

• ML / NLP for programming languages
• How programmers choose names

• (Combining static program analysis with probabilistic modelling)
• Learning graph structure: design patterns
• Find patterns in program executions: debugging

• Visualization / Data analysis
• “machine learning for the masses”
• Clustering with prior knowledge: “Not that one”
• Tools for monitoring models over time
• Tools for error analysis
• Combining interpretability with predictive accuracy

