
Informatics 2D. Tutorial 8

Probabilities and Bayesian Networks

Week 9

Notation

We follow the notation in Russell and Norvig 13.2. Random variables begin
with an uppercase letter. Members of a random variable’s domain (the possible
values it can take on) start with a lowercase letter. For example, the random
variable A can take on values {true, false}. By convention, the proposition of
the form A = true is abbreviated as a, while A = false is abbreviated as ¬a.

Part 1: Basic Probability

In a model used in a diagnostic system of a car, there are three random variables;
Battery that can be charged or dead, Radio that can work or not, and Ignition,
which describes whether the car starts or not.

If the battery is dead, the car usually does not start. On the other hand,
the radio may initially work if the battery is nearly dead but contains enough
charge for the radio.

1. Given the probabilities in Figure 1 what is the probability of the following:
(pay attention to the use of upper/lowercase)

• P (battery)

• P (Radio)

• P (radio ∧ ¬ignition)

• P (¬radio ∨ ¬ignition)

2. Derive Bayes rule from the Product Rule (see Figure 2)

3. Using the product rule in Figure 2 and the full joint distribution defined
in Figure 1, compute:

P (Ignition | ¬radio)

4. Suppose that we know that Battery is the cause for Ignition and also the
cause of Radio, and that Radio is conditionally independent of Ignition
given Battery, what is the easiest way to write the full joint probability
distribution:

P (Battery, Radio, Ignition)
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Figure 1: A full joint distribution for the Battery, Radio, and Ignition world.

Figure 2: Useful Probability Rules
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Figure 3: Probabilities

Part 2: Bayesian Networks

In a di↵erent model of the car, the alternator (A) can stop working due to an
electric fault (E) or due to the breaking of the drive belt (D). The failure of the
alternator causes complete discharge of the battery (B) that supplies current
to the radio (R) and lights (L). The battery, the lights and the radio may also
stop working for internal reasons.

1. Draw the Bayesian network that represents the model of the car, show-
ing the variables and the dependence/independence relationships between
them.

2. Use the obtained network and the probabilities listed in Figure 3 to com-
pute the probability of:

• P (d, e, a, b, ¬r, ¬l)

• P (¬d, e, ¬a, b, r, l)

Part 3: Exact Inference in Bayesian Networks

To make a probability inference query means to compute the posterior prob-
ability distribution for a set of query variables given some observed event. X
denoted the query variable, E denotes the set of evidence variables E1, ..., En,
Y denotes the non-evidence variables, also called hidden variables.

Conditional probability can be computed by summing terms from the full
joint distribution:

P (X|e) = ↵P (X, e) = ↵⌃P (X, e, y)

where ↵ is the normalisation factor.
Using the enumeration algorithm in Figure 4, Compute the conditional prob-

ability of:
P (D | A = true)
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Figure 3: Probabilities for the second car model (Part 2)

Part 2: Bayesian Networks

In a different model of the car, the alternator (A) can stop working due to an
electric fault (E) or due to the breaking of the drive belt (D). The failure of the
alternator causes complete discharge of the battery (B) that supplies current
to the radio (R) and lights (L). The battery, the lights and the radio may also
stop working for internal reasons.

1. Draw the Bayesian network that represents the model of the car, show-
ing the variables and the dependence/independence relationships between
them.

2. Use the obtained network and the probabilities listed in Figure 3 to com-
pute the probability of:

• P (d, e, a, b, ¬r, ¬l)
• P (¬d, e, ¬a, b, r, l)

Part 3: Exact Inference in Bayesian Networks

To make a probability inference query means to compute the posterior prob-
ability distribution for a set of query variables given some observed event. X
denotes the query variable, E denotes the set of evidence variables E1, ..., En,
Y = Y1 . . . Yl denotes the non-evidence variables, also called hidden variables.

Conditional probability can be computed by summing terms from the full
joint distribution:

P (X|e) = αP (X, e) = α
∑
y
P (X, e,y)

where α is the normalisation factor.
Using the enumeration algorithm in Figure 4, Compute the conditional prob-

ability of:
P (D | A = true)
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14 PROBABILISTIC
REASONING

function ENUMERATION-ASK(X , e, bn) returns a distribution over X
inputs: X , the query variable

e, observed values for variables E
bn , a Bayes net with variables {X} ∪ E ∪ Y /* Y = hidden variables */

Q(X )← a distribution over X , initially empty
for each value xi of X do
Q(xi)← ENUMERATE-ALL(bn .VARS, exi )

where exi is e extended withX = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars , e) returns a real number
if EMPTY?(vars) then return 1.0
Y ← FIRST(vars)
if Y has value y in e
then return P (y | parents(Y )) × ENUMERATE-ALL(REST(vars), e)
else return

P

y P (y | parents(Y )) × ENUMERATE-ALL(REST(vars), ey)
where ey is e extended with Y = y

Figure 14.9 The enumeration algorithm for answering queries on Bayesian networks.

function ELIMINATION-ASK(X , e, bn) returns a distribution over X
inputs: X , the query variable

e, observed values for variables E
bn , a Bayesian network specifying joint distribution P(X1, . . . , Xn)

factors← [ ]
for each var in ORDER(bn .VARS) do

factors← [MAKE-FACTOR(var , e)|factors ]
if var is a hidden variable then factors← SUM-OUT(var , factors )

return NORMALIZE(POINTWISE-PRODUCT(factors ))

Figure 14.10 The variable elimination algorithm for inference in Bayesian networks.
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Figure 4: The enumeration algorithm
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