pll.?).

ELETE-LIST

Partial-Order Planning 387

gives a heuristic value of 3. There is one minor irritation: the set cover problem is NP-
hard. A simple greedy set-covering algorithm is guaranteed to return a value that is within a
factor of log n of the true minimum value, where n is the number of literals in the goal, and
usually works much better than this in practice. Unfortunately, the greedy algorithm loses the
guarantee of admissibility for the heuristic.

It is also possible to generate relaxed problems by removing negative effects without
removing preconditions. That is, if an action has the effect A A =B in the original problem,
it will have the effect A in the relaxed problem. This means that we need not worry about
negative interactions between subplans, because no action can delete the literals achieved
by another action. The solution cost of the resulting relaxed problem gives what is called the
empty-delete-list heuristic. The heuristic is quite accurate, but computing it involves actually
running a (simple) planning algorithm. In practice, the search in the relaxed problem is often
fast enough that the cost is worthwhile.

The heuristics described here can be used in either the progression or the regression
direction. At the time of writing, progression planners using the empty-delete-list heuristic
hold the lead. That is likely to change as new heuristics and new search techniques are ex-
plored. Since planning is exponentially hard,’ no algorithm will be efficient for all problems,
but many practical problems can be solved with the heuristic methods in this chapter—far
more than could be solved just a few years ago.

3 PARTIAL-ORDER PLANNING

EAST COMMITMENT

Forward and backward state-space search are particular forms of rotally ordered plan search.
They explore only strictly linear sequences of actions directly connected to the start or goal.
This means that they cannot take advantage of problem decomposition. Rather than work on
each subproblem separately, they must always make decisions about how to sequence actions
from all the subproblems. We would prefer an approach that works on several subgoals
independently, solves them with several subplans, and then combines the subplans.

Such an approach also has the advantage of flexibility in the order in which it constructs
the plan. That is, the planner can work on “obvious” or “important” decisions first, rather than
being forced to work on steps in chronological order. For example, a planning agent that is in
Berkeley and wishes to be in Monte Carlo might first try to find a flight from San Francisco
to Paris; given information about the departure and arrival times, it can then work on ways to
get to and from the airports.

The general strategy of delaying a choice during search is called a least commitment
strategy. There is no formal definition of least commitment, and clearly some degree of
commitment is necessary, lest the search would make no progress. Despite the informality,
least commitment is a useful concept for analyzing when decisions should be made in any
search problem.

5 Technically, STRIPS-style planning is PSPACE-complete unless actions have only positive preconditions and
only one effect literal (Bylander, 1994).

388

Chapter 11. Plannig

PARTIAL-ORDER
PLANNER

LINEARIZATION

Our first concrete example will be much simpler than planning a vacation. Conside
the simple problem of putting on a pair of shoes. We can describe this as a formal plannigg
problem as follows:

Goal{ RightShoeOn N LeftShoeOn)

Init()

Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Action(RightSock, EFFECT: RightSockOn) '
Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Action(LeftSock, EFFECT: LeftSockOn) .

A planner should be able to come up with the two-action sequence RightSock followed by
RightShoe to achieve the first conjunct of the goal and the sequence LeftSock followed by
LeftShoe for the second conjunct. Then the two sequences can be combined to yield the final
plan. In doing this, the planner will be manipulating the two subsequences independently,
without committing to whether an action in one sequence is before or after an action in the
other. Any planning algorithm that can place two actions into a plan without specifying which
comes first is called a partial-order planner. Figure 11.6 shows the partial-order plan that is
the solution to the shoes and socks problem. Note that the solution is represented as a graph
of actions, not a sequence. Note also the “dummy” actions called Start and Finish, which
mark the beginning and end of the plan. Calling them actions symplifies things, because
now every step of a plan is an action. The partial-order solution corresponds to six possible
total-order plans; each of these is called a linearization of the partial-order plan.

Partial-order planning can be implemented as a search in the space of partial-order
plans. (From now on, we will just call them “plans.”) That is, we start with an empty plan.
Then we consider ways of refining the plan until we come up with a complete plan that
solves the problem. The actions in this search are not actions in the world, but actions on
plans: adding a step to the plan, imposing an ordering that puts one action before another,
and so on.

We will define the POP algorithm for partial-order planning. It is traditional to write
out the POP algorithm as a stand-alone program, but we will instead formulate partial-order
planning as an instance of a search problem. This allows us to focus on the plan refinement
steps that can be applied, rather than worrying about how the algorithm explores the space. In
fact, a wide variety of uninformed or heuristic search methods can be applied once the search
problem is formulated.

Remember that the states of our search problem will be (mostly unfinished) plans. To
avoid confusion with the states of the world, we will talk about plans rather than states. Each
plan has the following four components, where the first two define the steps of the plan and
the last two serve a bookkeeping function to determine how plans can be extended:

e A set of actions that make up the steps of the plan. These are taken from the set of
actions in the planning problem. The “empty” plan contains just the Start and Finish
actions. Start has no preconditions and has as its effect all the literals in the initial state
of the planning problem. Finish has no effects and has as its preconditions the goal
literals of the planning problem.

Y
yy
1al
Ly,
he
ch

ph

ch
IS¢
sle -

ler
an.
1at

€1,

der

ent

rch

ach
nd

m 11.3.

Partial-Order Planning 389
Partial-Order Plan: Total-Order Plans:
Start Start Start Start Start Start Start
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Left Right
Sock Sock * % * % & #
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
LeftSockOn RightSockOn + + % + % . *
. Right Left Right Left Left Right
t
'éf]fée S;]gohe Sh;e Sh:e Sh;e Sh;e SO;‘,k So;k
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
LeftShoeOn, RightShoeOn + + % ,} % @
Finish Finish Finish Finish Finish Finish Finish
Figure 11.6 A partial-order plan for putting on shoes and socks, and the six corresponding
linearizations into total-order plans.

RightSock T9ht5ockOn piopiGh oe

e A set of ordering constraints. Each ordering constraint is of the form A < B, which is
read as “A before B” and means that action A must be executed sometime before ac-
tion B, but not necessarily immediately before. The ordering constraints must describe
a proper partial order. Any cycle—such as A < B and B < A—represents a contradic-
tion, so an ordering constraint cannot be added to the plan if it creates a cycle.

A set of causal links. A causal link between two actions A and B in the plan is written
as A L, B and is read as “A achieves p for B.” For example, the causal link

asserts that RightSockOn is an effect of the RightSock action and a precondition of
RightShoe. It also asserts that RightSockOn must remain true from the time of ac-
tion RightSock to the time of action RightShoe. In other words, the plan may not be .
extended by adding a new action C' that conflicts with the causal link. An action C'
conflicts with A _?, B if C has the effect —p and if C could (according to the ordering
constraints) come after A and before B. Some authors call causal links protection in-

tervals, because the link A _£, B protects p from being negated over the interval from
Ato B.

A set of open preconditions. A precondition is open if it is not achieved by some action
in the plan. Planners will work to reduce the set of open preconditions to the empty set,
without introducing a contradiction.

390 Chapter 11.

Planning -

For example, the final plan in Figure 11.6 has the following components (not shown are the
ordering constraints that put every other action after Start and before Finish):

Actions:{ RightSock, RightShoe, LeftSock, LeftShoe, Start, Finish}

Orderings:{ RightSock < RightShoe, LeftSock < LeftShoe}

Links:{ RightSock RightSockOn piantShoe, LeftSock Y990 LeftShoe,
RightShoe 9M5he0n Binish. LeftShoe Le/th9%0m pingsh)

Open Preconditions:{ } .

CONSISTENT PLAN We define a consistent plan as a plan in which there are no cycles in the ordering con
straints and no conflicts with the causal links. A consistent plan with no open preconditions
,|(_b;— is a solution. A moment’s thought should convince the reader of the following fact: every
—— linearization of a partial-order solution is a total-order solution whose execution from the
initial state will reach a goal state. This means that we can extend the notion of “‘executing
a plan” from total-order to partial-order plans. A partial-order plan is executed by repeatedly
choosing any of the possible next actions. We will see in Chapter 12 that the flexibility avail-
able to the agent as it executes the plan can be very useful when the world fails to cooperate.
The flexible ordering also makes it easier to combine smaller plans into larger ones, because
each of the small plans can reorder its actions to avoid conflict with the other plans.
Now we are ready to formulate the search problem that POP solves. We will begin with
a formulation suitable for propositional planning problems, leaving the first-order complica-
tions for later. As usual, the definition includes the initial state, actions, and goal test.

e The initial plan contains Start and Finish, the ordering constraint Start < Finish, and
no causal links and has all the preconditions in Finish as open preconditions.

e The successor function arbitrarily picks one open precondition p on an action B and
generates a successor plan for every possible consistent way of choosing an action A
that achieves p. Consistency is enforced as follows:

1. The causal link A _2_, B and the ordering constraint A < B are added to the plan.
Action A may be an existing action in the plan or a new one. If it is new, add it to
the plan and also add Start < A and A < Finish.

2. We resolve conflicts between the new causal link and all existing actions and be-
tween the action A (if it is new) and all existing causal links. A conflict between
A P, BandC isresolved by making C' occur at some time outside the protection
interval, either by adding B < C or C' < A. We add successor states for either or
both if they result in consistent plans.

s The goal test checks whether a plan is a selution to the original planning problem. -
Because only consistent plans are generated, the goal test just needs to check that there
are no open preconditions.

Remember that the actions considered by the search algorithms under this formulation are
plan refinement steps rather than the real actions from the domain itself. The path cost is
therefore irrelevant, strictly speaking, because the only thing that matters is the total cost of
the real actions in the plan to which the path leads. Nonetheless, it is possible to specify a
path cost function that reflects the real plan costs: we charge 1 for each real action added to

Partial-Order Planning k 391

the plan and O for all other refinement steps. In this way, g(n), where n is a plan, will be
equal to the number of real actions in the plan. A heuristic estimate h{n) can also be used.

At first glance, one might think that the successor function should include successors
for every open p, not just for one of them. This would be redundant and inefficient, however,
for the same reason that constraint satisfaction algorithms don’t include successors for every
possible variable: the order in which we consider open preconditions (like the order in which
we consider CSP variables) is commutative. (See page 141.) Thus, we can choose an arbitrary
ordering and still have a complete algorithm. Choosing the right ordering can lead to a faster
search, but all orderings end up with the same set of candidate solutions.

A partial-order planning example

Now let’s look at how POP solves the spare tire problem from Section 11.1. The problem
description is repeated in Figure 11.7.

Init(At(Flat, Azle) A At(Spare, Trunk))
Goal{ At(Spare, Azle))
Action(Remove(Spare, Trunk),

PRECOND: At(Spare, Trunk)

EFFECT: — At(Spare, Trunk) A At(Spare, Ground))
Action(Remove(Flat, Axle),

PRECOND: At(Flat, Azle)

EFFECT: — At(Flat, Azle) A At(Flat, Ground))
Action(PutOn(Spare, Azle),

PRECOND: At(Spare, Ground) A — At(Flat, Azle)

EFFECT: — At(Spare. Ground) A At(Spare, Azle))
Action(Leave Overnight,

PRECOND:

EFFECT: — At(Spare, Ground) A — At(Spare, Azle) N — At(Spare, Trunk)

A = At(Flat, Ground) A — At(Flat, Azle))

Figare 11.7 The simple flat tire problem description.

The search for a solution begins with the initial plan, containing a Start action with the
effect At(Spare, Trunk) A At(Flat, Azle) and a Finish action with the sole precondition
At(Spare, Azle). Then we generate successors by picking an open precondition to work
on (irrevocably) and choosing among the possible actions to achieve it. For now, we will
not worry about a heuristic function to help with these decisions; we will make seemingly
arbitrary choices. The sequence of events is as follows:

1. Pick the only open precondition, At(Spare, Azle) of Finish. Choose the only applica-
ble action, PutOn(Spare, Azle).
2. Pick the At(Spare, Ground) precondition of PutOn(Spare, Azle). Choose the only

applicable action, Remove(Spare, Trunk) to achieve it. The resulting plan is shown in
Figure 11.8.

Chapter 11. Planning

At(Spare, Trunk)l Remove(Spare, Trunk)

Al(Spare, Trunk) Af(Spare, Ground)
Al Flat, Axle) —At(Flat, Axle) g

Figure 11.8 The incomplete partial-order plan for the tire problem, after choosing actions
for the first two open preconditions. Boxes represent actions, with preconditions on the left
and effects on the right. (Effects are omitted, except for that of the Start action.) Dark arrows
represent causal links protecting the proposition at the head of the arrow.

3. Pick the ~At(Flat, Azle) precondition of PutOn(Spare, Azle). Just to be contrary,
choose the LeaveOvernight action rather than the Remove(Flat, Azle) action. Notice
that Leave Overnight also has the effect ~A¢(Spare, Ground), which means it conflicts
with the causal link

Remove(Spare, Trunk) At(Spare,Ground) PutOn(Spare, Azle) .
To resolve the conflict we add an ordering constraint putting LeaveOvernight before

Remove(Spare, Trunk). The resulting plan is shown in Figure 11.9. (Why does this -
resolve the conflict, and why is there no other way to resolve it?)

Al(Spare, Trunk)l Remove(Spare, Trunk)

!

At Spare, Trunk) / At(Spare,Ground)
I tO A AY S| , Ax ini
At(Flat,AxIe) ~Al(Flat Axle) PutOn(Spare, X‘e)]_» {(Spare xe)

/ “— Al(Flat, Axle)

- —AK Flat,Ground)
LeaveOvernight |—At{Spare Axle)
Al(Spare,Ground)

=AY Spare, Trunk)

Figure 11.9 The plan after choosing LeaveQOuvernight as the action for achieving
—At(Flat, Azle). To avoid a conflict with the causal link from Remove(Spare, Trunk)
that protects At(Spare, Ground), LeaveOvernight is constrained to occur before
Remove(Spare, Trunk), as shown by the dashed arrow,

4. The only remaining open precondition at this point is the A¢(Spare, Trunk) precondi-
tion of the action Remove(Spare, Trunk). The only action that can achieve it is the ex-
isting Start action, but the causal link from Start to Remove(Spare, Trunk) is in con-
flict with the ~A¢(Spare, Trunk) effect of LeaveOverhight. This time there is no way
to resolve the conflict with Leave Overnight: we cannot order it before Start (because
nothing can come before Start), and we cannot order it after Remove(Spare, Trunk)
(because there is already a constraint ordering it before Remove(Spare, Trunk)). So
we are forced to back up, remove the LeaveOvernight action and the last two causal
links, and return to the state in Figure 11.8. In essence, the planner has proved that
LeaveOvernight doesn’t work as a way to change a tire.

Partial-Order Planning : 393 |

5. Consider again the = At(Flat, Azle) precondition of PutOn(Spare, Azle). This time,
we choose Remove(Flat, Azle).

6. Once again, pick the At(Spare, Trunk) precondition of Remove(Spare, Trunk) and
choose Start to achieve it. This time there are no conflicts.

7. Pick the At(Flat, Azle) precondition of Remove(Flat, Azle), and choose Start to
achieve it. This gives us a complete, consistent plan—in other words a solution—as
shown in Figure 11.10.

Af{Spare, Trunk)] Remove(Spare, Trunk)

Al(Spare, Trunk) Al Spare,Ground)
o [PutOn(Spare Axle) |-s-AttSpare,Axel|_Finish _|

Al Flat,Axle) —A{Flat, Axle)

At(Flat,Axle)| Remove(Flat,Axle)

Figure 11.10 The final solution to the tire problem. Note that Remove(Spare, Trunk)
and Remove(Flat, Azle) can be done in either order, as long as they are completed before
the PutOn(Spare, Azle) action.

Although this example is very simple, it illustrates some of the strengths of partial-order
planning. First, the causal links lead to early pruning of portions of the search space that,
because of irresolvable conflicts, contain no solutions. Second, the solution in Figure 11.10
is a partial-order plan. In this case the advantage is small, because there are only two possible
linearizations; nonetheless, an agent might welcome the flexibility—for example, if the tire
has to be changed in the middle of heavy traffic.

The example also points to some possible improvements that could be made. For exam-
ple, there is duplication of effort: Start is linked to Remove(Spare, Trunk) before the con-
flict causes a backtrack and is then unlinked by backtracking even though it is not involved
in the conflict. It is then relinked as the search continues. This is typical of chronological
backtracking and might be mitigated by dependency-directed backtracking.

Partial-order planning with unbound variables

In this section, we consider the complications that can arise when POP is used with first-
order action representations that include variables. Suppose we have a blocks world problem
(Figure 11.4) with the open precondition On(A, B) and the action

Action(Move(b, z,y),
PRECOND:On(b, z) A Clear(b) A Clear(y),
EFFECT:On(b,y) A Clear(z) A = On(b,x) A = Clear(y)) .

394

Chapter 11. Planning

INEQUALITY
CONSTRAINTS

This action achieves On(A, B) because the effect On (b, y) unifies with On(A, B) with the -
substitution {b/A,y/B}. We then apply this substitution to the action, yielding

Action(Move(A, z, B),
PRECOND:On(A, z) A Clear(A) A Clear(B),
EFFECT:On(A, B) A Clear(z) A ~On(A, x) A =Clear(B)) .

This leaves the variable x unbound. That is, the action says to move block A from somewhere,
without yet saying whence. This is another example of the least commitment principle: we
can delay making the choice until some other step in the plan makes it for us. For example,
suppose we have On(A, D) in the initial state. Then the Start action can be used to achieve
On(A, z), binding x to D. This strategy of waiting for more information before choosing z
is often more efficient than trying every possible value of x and backtracking for each one
that fails.

The presence of variables in preconditions and actions complicates the process of de-
tecting and resolving conflicts. For example, when Move(A, z, B) is added to the plan, we
will need a causal link

Move(A, z, B) On(AB) Rinish .

If there is another action My with effect ~On(A4, z), then My conflicts only if z is B. To ac-
commodate this possibility, we extend the representation of plans to include a set of inequal-
ity constraints of the form z # X where z is a variable and X is either another variable or a
constant symbol. In this case, we would resolve the conflict by adding z # B, which means
that future extensions to the plan can instantiate z to any value except B. Anytime we apply
a substitution to a plan, we must check that the inequalities do not contradict the substitution.
For example, a substitution that includes x/y conflicts with the inequality constraint z # y.
Such conflicts cannot be resolved, so the planner must backtrack.

A more extensive example of POP planning with variables in the blocks world is given

“in Section 12.6.

Heuristics for partial-order planning

Compared with total-order planning, partial-order planning has a clear advantage in being
able to decompose problems into subproblems. It also has a disadvantage in that it does
not represent states directly, so it is harder to estimate how far a partial-order plan is from
achieving a goal. At present, there is less understanding of how to compute accurate heuristics
for partial-order planning than for total-order planning. v '

The most obvious heuristic is to count the number of distinct open preconditions. This
can be improved by subtracting the number of open preconditions that match literals in the
Start state. As in the total-order case, this overestimates the cost when there are actions
that achieve multiple goals and underestimates the cost when there are negative interactions
between plan steps. The next section presents an approach that allows us to get much more
accurate heuristics from a relaxed problem.

The heuristic function is used to choose which plan to refine. Given this choice, the
algorithm generates successors based on the selection of a single open precondition to work

11.4.

Planning Graphs 395

on. As in the case of variable selection on constraint satisfaction algorithms, this selection
has a large impact on efficiency. The most-constrained-variable heuristic from CSPs can
be adapted for planning algorithms and seems to work well. The idea is to select the open
condition that can be satisfied in the fewest number of ways. There are two special cases
of this heuristic. First, if an open condition cannot be achieved by any action, the heuristic
will select it; this is a good idea because early detection of impossibility can save a great
deal of work. Second, if an open condition can be achieved in only one way, then it should
be selected because the decision is unavoidable and could provide additional constraints on
other choices still to be made. Although full computation of the number of ways to satisfy
each open condition is expensive and not always worthwhile, experiments show that handling

the two special cases provides very substantial speedups.

4 PLANNING GRAPHS

All of the heuristics we have suggested for total-order and partial-order planning can suffer
from inaccuracies. This section shows how a special data structure called a planning graph
can be used to give better heuristic estimates. These heuristics can be applied to any of the
search techniques we have seen so far. Alternatively, we can extract a solution directly from
the planning graph, using a specialized algorithm such as the one called GRAPHPLAN.

A planning graph consists of a sequence of levels that correspond to time steps in the
plan, where level 0 is the initial state. Each level contains a set of literals and a set of actions.
Roughly speaking, the literals are all those that could be true at that time step, depending on
the actions executed at preceding time steps. Also roughly speaking, the actions are all those
actions that could have their preconditions satisfied at that time step, depending on which of
the literals actually hold. We say “roughly speaking” because the planning graph records only
a resfricted subset of the possible negative interactions among actions; therefore, it might be
optimistic about the minimum number of time steps required for a literal to become true.
Nonetheless, this number of steps in the planning graph provides a good estimate of how
difficult it is to achieve a given literal from the initial state. More importantly, the planning
graph is defined in such a way that it can be constructed very efficiently.

Planning graphs work only for propositional planning problems—ones with no vari-
ables. As we mentioned in Section 11.1, both STRiPS and ADL representations can be
propositionalized. For problems with large numbers of objects, this could result in a very
substantial blowup in the number of action schemata. Despite this, planning graphs have
proved to be effective tools for solving hard planning problems.

We will illustrate planning graphs with a simple example. (More complex examples
lead to graphs that won’t fit on the page.) Figure 11.11 shows a problem, and Figure 11.12
shows its planning graph. We start with state level S, which represents the problem’s initial
state. We follow that with action level Ay, in which we place all the actions whose precon-
ditions are satisfied in the previous level. Each action is connected to its preconditions in So

and its effects in S1, in this case introducing new literals into S; that were not in Sg.

