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Where are we?

Last time . . .

! Looked at Dynamic Bayesian Networks

! General, powerful method for describing temporal probabilistic
problems

! Unfortunately exact inference computationally too hard

! Methods for approximate inference (particle filtering)

Today . . .

! Decision Making under Uncertainty
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Combining beliefs and desires

! Rational agents do things that are an optimal tradeoff between:
! the likelihood of reaching a particular resultant state (given one’s

actions) and
! The desirability of that state

! So far we have done the ‘likelihood’ bit: we know how to evaluate
the probability of being in a particular state at a particular time.

! But we’ve not looked at an agent’s preferences or desires

! Now we will discuss utility theory in more detail to obtain a full
picture of decision-theoretic agent design

Informatics UoE Informatics 2D 198

Introduction
Utility theory & utility functions

Decision networks
Summary

Constraints on rational preferences
Constraints on rational preferences
Utility functions

Utility theory & utility functions

! Agent’s preferences between world states are described using a
utility function

! UF assigns some numerical value U(S) to each state S to express
its desirability for the agent

! Nondeterministic action a has results Result(a) and probabilities
P(Result(a) = s ′|a, e) summarise agent’s knowledge about its
effects given evidence observations e.

! Can be combined with probabilities for outcomes to obtain
expected utility of action:

EU(A|E ) =
∑

s′
P(Result(a) = s ′|a, e)U(s ′)
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Utility theory & utility functions

! Principle of maximum expected utility (MEU) says agent should
use action that maximises expected utility

! In a sense, this summarises the whole endeavour of AI:

If agent maximises utility function that correctly reflects the
performance measure applied to it, then optimal performance
will be achieved by averaging over all environments in which
agent could be placed

! Of course, this doesn’t tell us how to define utility function or how
to determine probabilities for any sequence of actions in a complex
environment

! For now we will only look at one-shot decisions, not sequential
decisions (next lecture)
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Constraints on rational preferences

! MEU sounds reasonable, but why should this be the best quantity
to maximise? Why are numerical utilities sensible? Why single
number?

! Questions can be answered by looking at constraints on
preferences

! Notation:

A ≻ B A is preferred to B

A ∼ B the agent is indifferent between A and B

A " B the agent prefers A to B or is indifferent between them

! But what are A and B? Introduce lotteries with outcomes
C1 . . . Cn and accompanying probabilities
L = [p1,C1; p2,C2; . . . ; pn,Cn]
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Constraints on rational preferences

! Outcome of a lottery can be state or another lottery

! Can be used to understand how preferences between complex
lotteries are defined in terms of preferences among their (outcome)
states

! The following are considered reasonable axioms of utility theory

! Orderability: (A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B)

! Transitivity: If agent prefers A over B and B over C then he
must prefer A over C : (A ≻ B) ∧ (B ≻ C ) ⇒ (A ≻ C )

! Example: Assume A ≻ B ≻ C ≻ A and A, B , C are goods
! Agent might trade A and some money for C if he has A
! We then offer B for C and some cash and then trade A for B
! Agent would lose all his money over time

Informatics UoE Informatics 2D 202

Introduction
Utility theory & utility functions

Decision networks
Summary

Constraints on rational preferences
Constraints on rational preferences
Utility functions

Constraints on rational preferences

! Continuity: If B is between A and C in preference, then with
some probability agent will be indifferent between getting B for
sure and a lottery over A and C

A ≻ B ≻ C ⇒ ∃p [p, A; 1 − p, C ] ∼ B

! Substitutability: Indifference between lotteries leads to
indifference between complex lotteries built from them

A ∼ B ⇒ [p, A; 1 − p, C ] ∼ [p, B; 1 − p, C ]

! Monotonicity: Preferring A to B implies preference for any
lottery that assigns higher probability to A

A ≻ B ⇒ (p ≥ q ⇔ [p, A; 1 − p, B] " [q, A; 1 − q, B]
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Decomposability example
! Decomposability: Compound lotteries can be reduced to simpler

one

[p, A; 1 − p, [q, B; 1 − q, C ]] ∼ [p, A; (1 − p)q, B; (1 − p)(1 − q), C ]

p

q

A

B

C

p

(1–p)

(1–p)(1–q)

(1–q)

A

B

C

is equivalent to
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From preferences to utility

! The following axioms of utility ensure that utility functions follow
the above axioms on preference:

! Utility principle: there exists a function such that

U(A) > U(B) ⇔ A ≻ B U(A) = U(B) ⇔ A ∼ B

! MEU principle: utility of lottery is sum of probability of outcomes
times their utilities

U([p1, S1; . . . ; pn, Sn]) =
∑

i

piU(Si )

! But an agent might not know even his own utilities!

! But you can work out his (or even your own!) utilities by observing
his (your) behaviour and assuming that he (you) chooses to MEU.
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Utility functions

! According to the above axioms, arbitrary preferences can be
expressed by utility functions

! I prefer to have a prime number of £in my bank account; when I
have £10 I will give away £3.

! But usually preferences are more systematic, a typical example
being money (roughly, we like to maximise our money)

! Agents exhibit monotonic preference toward money, but how
about lotteries involving money?

! “Who wants to be a millionaire”-type problem, is pocketing a
smaller amount irrational?

! Expected monetary value (EMV) is actual expectation of
outcome
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Utility of money

! Assume you can keep 1 million or risk it with the prospect of
getting three millions at the toss of a (fair) coin

! EMV of accepting gamble is 0.5 × 0 + 0.5 × 3, 000, 000 which is
greater than 1, 000, 000

! Use Sn to denote state of possessing wealth “n dollars”, current
wealth Sk

! Expected utilities become:
! EU(Accept) = 1

2U(Sk) + 1
2U(Sk+3,000,000)

! EU(Decline) = U(Sk+1,000,000)

! But it all depends on utility values you assign to levels of monetary
wealth (is first million more valuable than second?)
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Utility of money (empirical study)

! It turns out that for most people this is usually concave (curve
(a)), showing that going into debt is considered disastrous relative
to small gains in money—risk averse.

U

$ $
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o
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o
o

o
o

o o
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! But if you’re already $10M in debt, your utility curve is more like
(b)—risk seeking when desperate!
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Utility scales

! Axioms don’t say anything about scales

! For example transformation of U(S) into U ′(S) = k1 + k2U(S)
(k2 positive) doesn’t affect behaviour

! In deterministic contexts behaviour is unchanged by any
monotonic transformation (utility function is value
function/ordinal function)

! One procedure for assessing utilities is to use normalised utility
between “best possible prize” (u⊤ = 1) and “worst possible
catastrophe” (u⊥ = 0)

! Ask agent to indicate preference between S and the standard
lottery [p, u⊤ : (1 − p), u⊥], adjust p until agent is indifferent
between S and standard lottery, set U(S) = p
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Decision networks

! What we now need is a way of integrating utilities into our view of
probabilistic reasoning

! Decision networks (influence diagrams) combine BNs with
additional node types for actions and utilities

! Illustrate with airport siting problem:

U

Airport Site

Deaths

Noise

Cost

Litigation

Construction

Air Traffic
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Representing decision problems with DNs

! Chance nodes (ovals) represent random variables with CPTs,
parents can be decision nodes

! Decision nodes represent decision-making points at which actions
are available

! Utility nodes represent utility function connected to all nodes
that affect utility directly

! Often nodes describing outcome states are omitted and expected
utility associated with actions is expressed (rather than states) –
action-utility tables
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Representing decision problems with DNs

! Simplified version with action-utility tables

! Less flexible but simpler (like pre-compiled version of general case)

U

Airport Site

Litigation

Construction

Air Traffic
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Evaluating decision networks

! Evaluation of a DN works by setting decision node to every
possible value

! “Algorithm”:

1. Set evidence variables for current state
2. For each value of decision node:

2.1 Set decision node to that value
2.2 Calculate posterior probabilities for parents of utility node
2.3 Calculate resulting (expected) utility for action

3. Return action with highest (expected) utility

! Using any algorithm for BN inference, this yields a simple
framework for building agents that make single-shot decisions
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Summary

! Foundations for rational decision making under uncertainty

! Utility theory and its axioms, utility functions

! Possible points of criticism?

! Decision networks nicely blend with our BN framework

! Only looked at one-shot decisions so far

! Next time: Markov Decision Processes
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