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Where are we?

Last time . . .

! Completed our account of Bayesian Networks

! Dealt with methods for exact and approximate inference in BNs

! Enumeration, variable elimination, sampling, MCMC

Today . . .

! Time and uncertainty I
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Time and uncertainty

! So far we have only seen methods for describing uncertainty in
static environments

! Every variable had a fixed value, we assumed that nothing changes
during evidence collection or diagnosis

! Many practical domains involve uncertainty about processes that
can be modelled with probabilistic methods

! Basic idea straightforward: imagine one BN model of the problem
for every time step and reason about changes between them
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States and observations

! Adopted approach similar to situation calculus: series of snapshots
(time slices) will be used to describe process of change

! Snapshots consist of observable random variables Et and
non-observable ones Xt

! For simplicity, we assume sets of (non)observable variables remain
constant over time, but this is not necessary

! Observation at t will be Et = et for some set of values et

! Assume that states start at t = 0 and evidence starts arriving at
t = 1
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States and observations

! Example: underground security guard wants to predict whether it
is raining but only observes every morning whether director comes
in carrying umbrella

! For each day, Et contains variable Ut (whether the umbrella
appears) and Xt contains state variable Rt (whether it’s raining)

! Evidence U1,U2, . . ., state variables R0,R1, . . .

! Use notation a : b to denote sequences of integers,
e.g. U1,U2,U3 = U1:3
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Stationary processes and the Markov assumption

! How do we specify dependencies among variables?

! Natural to arrange them in temporal order (causes usually precede
effects)

! Problem: set of variables is unbounded (one for each time slice),
so we would have to

! specify unbounded number of conditional probability tables
! specify an unbounded number of parents for each of these

! Solution to first problem: we assume that changes are caused by a
stationary process – the laws that govern the process do not
change themselves over time (not to be confused with “static”)

! For example, P(Ut |Parents(Ut)) does not depend on t
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Stationary processes and the Markov assumption

! Solution to second problem: Markov assumption – the current
state only depends on a finite history of previous states

! Such processes are called Markov processes or Markov chains

! Simplest form: first-order Markov processes, every state
depends only on predecessor state

! We can write this as P(Xt |X0:t−1) = P(Xt |Xt−1)

! This conditional distribution is called transition model

! Difference between first-order and second-order Markov processes:

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2
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Stationary processes and the Markov assumption
! Additionally, we will assume that evidence variables depend only

on current state:

P(Et |X0:t ,E0:t−1) = P(Et |Xt)

! This is called the sensor model (observation model) of the
system

! Notice direction of dependence: state causes evidence (but
inference goes in other direction!)

! In umbrella world, rain causes umbrella to appear
! Finally, we need a prior distribution over initial states P(X0)
! These three distributions give a specification of the complete JPD:

P(X0,X1, . . . ,Xt ,E1, . . . ,Et) = P(X0)
t∏

i=1

P(Xi |Xi−1)P(Ei |Xi )
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Umbrella world example

! Bayesian network structure and conditional distributions

! Transition model P(Raint |Raint−1), sensor model
P(Umbrellat |Raint)

tRain

tUmbrella

Raint–1

Umbrellat–1

Raint+1

Umbrellat+1

Rt -1 tP(R )

0.3f
0.7t

tR tP(U  )
0.9t
0.2f

! Rain depends only on rainfall on previous day, whether this is
reasonable depends on domain!
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Stationary processes and the Markov assumption

! If Markov assumptions seems too simplistic for some domains (and
hence, inaccurate), two measures can be taken

! We can increase the order of the Markov process model
! We can increase the set of state variables

! For example, add information about season, pressure or humidity

! But this will also increase prediction requirements (problem
alleviated if we add new sensors)

! Example: dependency of predicting movement of robot on battery
power level

! add battery level sensor
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Inference tasks in temporal models

! Now that we have described general model, we need inference
methods for a number of tasks

! Filtering/monitoring: compute belief state given evidence to
date, i.e. P(Xt |e1:t)

! Interestingly, an almost identical calculation yields the likelihood
of the evidence sequence P(e1:t)

! Prediction: computing posterior distribution over a future state
given evidence to date: P(Xt+k |e1:t)

! Smoothing/hindsight: compute posterior distribution of past
state, P(Xk |e1:t), 0 ≤ k < t

! Most likely explanation: compute arg maxx1:t P(x1:t |e1:t) i.e. the
most likely sequence of states given evidence
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! Done by recursive estimation: compute result for t+1 by doing

it for t and then updating with new evidence et+1. That is, for
some function f :

P(Xt+1|e1:t+1) = f (et+1,P(Xt |e1:t ))

!
P(Xt+1|e1:t+1) = P(Xt+1|e1:t , et+1)

= αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t) (Bayes’ rule)

= αP(et+1|Xt+1)P(Xt+1|e1:t) (Markov property)

= αP(et+1|Xt+1)
∑

xt

P(Xt+1|xt , e1:t)P(xt |e1:t) (conditioning)

= αP(et+1|Xt+1)
∑

xt

P(Xt+1|xt)P(xt |e1:t) (Markov assumption)

! P(et+1|Xt+1) is sensor model; P(Xt+1|xt) is transition model,
P(xt |e1:t) is recursive bit (current state distribution).
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! We can view estimate P(Xt |e1:t) as “message” f1:t propagated
and updated through sequence

! We write this process as f1:t+1 = αForward(f1:t , et+1)

! Time and space requirements for this are constant regardless of
length of sequence

! This is extremely important for agent design!

! All this is very abstract, let’s look at an example
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Example Compute P(R2|u1:2), U1 = true, U2 = true

! Suppose P(R0) = ⟨0.5, 0.5⟩
! Recursive equations:

P(R2|u1, u2) = αP(u2|R2)
∑

r1
P(R2|r1)P(r1|u1)

P(R1|u1) = α′P(u1|R1)
∑

r0
P(R1|r0)P(r0)

= α′⟨0.9, 0.2⟩(⟨0.7, 0.3⟩ × 0.5 + ⟨0.3, 0.7⟩ × 0.5)
= α′⟨0.9, 0.2⟩⟨0.5, 0.5⟩
= ⟨0.818, 0.182⟩

P(R2|u1, u2) = α⟨0.9, 0.2⟩(⟨0.7, 0.3⟩ × 0.818 + ⟨0.3, 0.7⟩ × 0.182)
= α⟨0.9, 0.2⟩⟨0.627, 0.373⟩
= α⟨0.565, 0.075⟩
= ⟨0.883, 0.117⟩
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Filtering and prediction

! Prediction works like filtering without new evidence

! Computation involves only transition model and not sensor model:

P(Xt+k+1|e1:t) =
∑

xt+k

P(Xt+k+1|xt+k )P(xt+k |e1:t)

! As we predict further and further into the future, distribution of
rain converges to ⟨0.5, 0.5⟩

! This is called the stationary distribution of the Markov process
(the more uncertainty, the quicker it will converge)
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Filtering and prediction

! We can use the above method to compute likelihood of evidence
sequence P(e1:t)

! Useful to compare different temporal models

! Use a likelihood message l1:t = P(Xt , e1:t) and compute

l1:t+1 = αForward(l1:t , et+1)

! Once we compute l1:t , summing out yields likelihood

L1:t = P(e1:t) =
∑

xt

l1:t(xt , e1:t)
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Summary

! Time and uncertainty (states and observations)

! Stationarity and Markov assumptions

! Inference in temporal models

! Filtering and prediction

! Next time: Time and Uncertainty II
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