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Where are we?

Last time . . .

! Inference in Bayesian Networks

! Exact methods: enumeration, variable elimination algorithm

! Computationally intractable in the worst case

Today . . .

! Approximate Inference in Bayesian Networks
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Approximate inference in BNs

! Exact inference computationally very hard

! Approximate methods important, here randomised sampling
algorithms

! Monte Carlo algorithms

! We will talk about two types of MC algorithms:

1. Direct sampling methods
2. Markov chain sampling
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Direct sampling methods

! Basic idea: generate samples from a known probability distribution

! Consider an unbiased coin as a random variable – sampling from
the distribution is like flipping the coin

! It is possible to sample any distribution on a single variable given a
set of random numbers from [0,1]

! Simplest method: generate events from network without evidence
! Sample each variable in ‘topological order’
! Probability distribution for sampled value is conditioned on values

assigned to parents
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Example

! Consider the following BN and ordering
[Cloudy ,Sprinkler ,Rain,WetGrass]:
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Example

! Direct sampling process:
! Sample from P(Cloudy) = ⟨0.5, 0.5⟩, suppose this returns true
! Sample from P(Sprinkler |Cloudy = true) = ⟨0.1, 0.9⟩, suppose this

returns false
! Sample from P(Rain|Cloudy = true) = ⟨0.8, 0.2⟩,

suppose this returns true
! Sample from

P(WetGrass|Sprinkler = false, Rain = true) = ⟨0.9, 0.1⟩, suppose
this returns true

! Event returned=[true, false, true, true]
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Direct sampling methods
! Generates samples with probability S(x1, . . . , xn)

S(x1, . . . , xn) = P(x1, . . . , xn) =
n∏

i=1

P(xi |parents(Xi ))

i.e. in accordance with the distribution
! Answers are computed by counting the number N(x1, . . . , xn) of

the times event x1, . . . , xn was generated and dividing by total
number N of all samples

! In the limit, we should get

lim
n→∞

N(x1, . . . , xn)

N
= S(x1, . . . , xn) = P(x1, . . . , xn)

! If the estimated probability P̂ becomes exact in the limit we call
the estimate consistent and we write “≈” in this sense, e.g.

P(x1, . . . , xn) ≈ N(x1, . . . , xn)/N
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Rejection sampling

! Purpose: to produce samples for hard-to-sample distribution from
easy-to-sample distribution

! To determine P(X |e) generate samples from the prior distribution
specified by the BN first

! Then reject those that do not match the evidence

! The estimate P̂(X = x |e) is obtained by counting how often
X = x occurs in the remaining samples

! Rejection sampling is consistent because, by definition:

P̂(X |e) =
N(X , e)

N(e)
≈ P(X , e)

P(e)
= P(X |e)
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Back to our example

! Assume we want to estimate P(Rain|Sprinkler = true), using 100
samples

! 73 have Sprinkler = false (rejected), 27 have Sprinkler = true
! Of these 27, 8 have Rain = true and 19 have Rain = false

! P(Rain|Sprinkler = true) ≈ α⟨8, 19⟩ = ⟨0.296, 0.704⟩
! True answer would be ⟨0.3, 0.7⟩
! But the procedure rejects too many samples that are not

consistent with e (exponential in number of variables)

! Not really usable (similar to naively estimating conditional
probabilities from observation)
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Likelihood weighting

! Avoids inefficiency of rejection sampling by generating only
samples consistent with evidence

! Fixes the values for evidence variables E and samples only the
remaining variables X and Y

! Since not all events are equally probable, each event has to be
weighted by its likelihood that it accords to the evidence

! Likelihood is measured by product of conditional probabilities for
each evidence variable, given its parents
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Likelihood weighting

! Consider query P(Rain|Sprinkler = true,WetGrass = true) in our
example; initially set weight w = 1, then event is generated:

! Sample from P(Cloudy) = ⟨0.5, 0.5⟩, suppose this returns true
! Sprinkler is evidence variable with value true, we set

w ← w × P(Sprinkler = true|Cloudy = true) = 0.1
! Sample from P(Rain|Cloudy = true) = ⟨0.8, 0.2⟩, suppose this

returns true
! WetGrass is evidence variable with value true, we set

w ← w×P(WetGrass = true|Sprinkler = true, Rain = true) = 0.099

! Sample returned=[true, true, true, true] with weight 0.099 tallied
under Rain = true
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Likelihood weighting – why it works

! S(z, e) =
∏l

i=1 P(zi |parents(Zi ))

! S ’s sample values for each Zi is influenced by the evidence among
Zi ’s ancestors

! But S pays no attention when sampling Zi ’s value to evidence
from Zi ’s non-ancestors; so it’s not sampling from the true
posterior probability distribution!

! But the likelihood weight w makes up for the difference between
the actual and desired sampling distributions:

w(z, e) =
m∏

i=1

P(ei |parents(Ei ))
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Likelihood weighting – why it works

! Since two products cover all the variables in the network, we can
write

P(z, e) =
l∏

i=1

P(zi |parents(Zi ))

︸ ︷︷ ︸
S(z,e)

m∏

i=1

P(ei |parents(Ei))

︸ ︷︷ ︸
w(z,e)

! With this, it is easy to derive that likelihood weighting is
consistent (tutorial exercise)

! Problem: most samples will have very small weights as the
number of evidence variables increases

! These will be dominated by tiny fraction of samples that accord
more than infinitesimal likelihood to the evidence
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The Markov chain Monte Carlo (MCMC) algorithm

! MCMC algorithm: create an event from a previous event, rather
than generate all events from scratch

! Helpful to think of the BN as having a current state specifying a
value for each variable

! Consecutive state is generated by sampling a value for one of the
non-evidence variables Xi conditioned on the current values of
variables in the Markov blanket of Xi

! Recall that Markov blanket consists of parents, children, and
children’s parents

! Algorithm randomly wanders around state space flipping one
variable at a time and keeping evidence variables fixed
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The MCMC algorithm

! Consider query P(Rain|Sprinkler = true,WetGrass = true) once
more

! Sprinkler and WetGrass (evidence variables) are fixed to their
observed values, hidden variables Cloudy and Rain are initialised
randomly (e.g. true and false)

! Initial state is [true, true, false, true]

! Execute repeatedly:
! Sample Cloudy given values of Markov blanket, i.e. sample from

P(Cloudy |Sprinkler = true, Rain = false)
! Suppose result is false, new state is [false, true, false, true]
! Sample Rain given values of Markov blanket, i.e. sample from

P(Rain|Sprinkler = true, Cloudy = false, WetGrass = true)
! Suppose we obtain Rain = true, new state [false, true, true, true]
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The MCMC algorithm – why it works

! Each state is a sample, contributes to estimate of query variable
Rain (count samples to compute estimate as before)

! Basic idea of proof that MCMC is consistent:

The sampling process settles into a “dynamic equilibrium” in
which the long-term fraction of time spent in each state is
exactly proportional to its posterior probability

! MCMC is a very powerful method used for all kinds of things
involving probabilities
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Summary

! Approximate inference in BN’s

! Direct sampling methods

! Likelihood working and why it works

! MCMC algorithm and why it works

! Next time: Time and Uncertainty I
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