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Introduction

Where are we?

Last time ...
» Introduced Bayesian networks
» Allow for compact representation of JPDs
» Methods for efficient representations of CPTs
» But how hard is inference in BNs?
Today ...
» Inference in Bayesian networks
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Introduction

Inference in BNs

» Basic task: compute posterior distribution for set of query
variables given some observed event (i.e. assignment of values to
evidence variables)

» Formally: determine P(X|e) given query variables X, evidence
variables E (and non-evidence or hidden variables Y)

» Example:
P(Burglary|JohnCalls = true, MaryCalls = true) = (0.284,0.716)

» First we will discuss exact algorithms for computing posterior
probabilities then approximate methods later
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Inference by enumeration

Inference by enumeration

» We have seen that any conditional probability can be computed
from a full JPD by summing terms

> P(Xle) = aP(X,e) =a}  P(X,e,y)
» Since BN gives complete representation of full JPD, we must be

able to answer a query by computing sums of products of
conditional probabilities from the BN

» Consider query
P(Burglary|JohnCalls = true, MaryCalls = true) = P(B|j, m)

» P(B|j,m)=aP(B,j,m)=a).> ,P(B,e a,j,m)
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Inference by enumeration

Inference by enumeration

>
4
4

Recall P(x1,...,x,) = [/, P(xi|parents(X;))
We can use CPTs to simplify this exploiting BN structure
For Burglary = true:

P(blj,m)=a} > P(b)P(e)P(alb, e)P(jla)P(m|a)

But we can improve efficiency of this by moving terms outside
that don't depend on sums

P(blj,m) = aP(b) ) _ P(e) Y  P(alb,e)P(jla)P(m|a)

To compute this, we need to loop through variables in order and
multiply CPT entries; for each summation we need to loop over
variable’s possible values infSbnttics
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Inference by enumeration

Example

» New burglar alarm has been fitted, fairly reliable but sometimes
reacts to earthquakes

» Neighbours John and Mary promise to call when they hear alarm

» John sometimes mistakes phone for alarm, and Mary listens to
loud music and sometimes doesn't hear alarm
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The variable elimination algorithm

The variable elimination algorithm

» Enumeration method is computationally quite hard.

» You often compute the same thing several times;
e.g. P(jla)P(m|a) and P(j|—a)P(m|—a) for each value of e
» Evaluation of expression shown in the following tree:

P(jla)
90

P(mla)
.70
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The variable elimination algorithm

The variable elimination algorithm

» Idea of variable elimination: avoid repeated calculations
Basic idea: store results after doing calculation once

>
» Works bottom-up by evaluating subexpressions
» Assume we want to evaluate

P(Blj,m) =aP(B)S P(e)S P(a|B,e) P ma
(Bl Z Z | (J| ) P(mla)
WE) S me T mARE wA e

» We've annotated each part with a factor.
» A factor is a matrix, indexed with its argument variables. E.g:

» Factor f5(A) corresponds to P(m|a) and depends just on A because
m is fixed (it's a 2 x 1 matrix).

f5(A) = (P(mla), P(m|-a))
> f3(A,B,E) is a2 x 2 x 2 matrix for P(a|B, e) P
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The variable elimination algorithm

The variable elimination algorithm
P(Blj, m) = of1(B) x .. f2(E) >_, f3(A, B, E) x f4(A) x f5(A)
» Summing out A produces a 2 x 2 matrix
(via pointwise product):
fo(B,E) = > ,f3(A,B,E) x fa(A) x f5(A)
= (f3(a, B, E) x f4(a) x f5(a))+
(f3(—a, B, E) x f4(—a) x f5(—a))
» So now we have
P(Blj,m) = of1(B) x > f2(E) x fs(B, E)
» Sum out E in the same way:
f7(B) = (f2(e) x f6(B, e)) + (f2(—e) x f6(B, —e))
» Using f1(B) = P(B), we can finally compute

P(Blj, m) = afy(B) x f7(B)

» Remains to define pointwise product and summing out infotidtics
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The variable elimination algorithm

An example

» Pointwise product yields product for union of variables in its

arguments:

f(X . XY Y 2 Z) =X X Ve Y)Y . YL 2 Z)
A[B[R(AB [[B[C|R(BCA[B]C]IAB,C)
T|T| 03 ||T|T| 02 T|T|T]03x02
T|F| 07 ||T|F| o8 T|T|F|03x08
FIT| o009 FIT| o6 T|F|T|07x06
FIF| o1 FIF| 04 T|F|F|07x04

FIT|T|09x02
FIT|F|09x08
FIF|T|01x06
FIF|F|01x04
-

» For example f(T,T,F) =f(T,T) x (T, F)
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The variable elimination algorithm

An example

» Summing out is similarly straightforward

» Trick: any factor that does not depend on the variable to be
summed out can be moved outside the summation process
» For example

Zfz X f3 A B E) X f4( ) X f5(A)

= f4(A) x f5(A ng ) x f3(A, B, E)

» Matrices are only multiplied when we need to sum out a variable
from the accumulated product
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The variable elimination algorithm

Another Example: P(J|b) = (P(j|b), P(—j|b))

PUIb) = ad> > ,> . P(J,b,e,a,m) prod., marg.
= ay..>..>.mP(b)P(e)P(alb,e)P(J|a)P(m]|a) cond. indep.
o> . P(e) >, P(alb,e) P(J|a) Z P(m|a)  move terms
S~~~ —— = m
fl(E) f2(A, E) f3(J,A) T
= d Ze fl(E) Za f2(A’ E) f3(J7 A)
2x1 2 %2 2x2
= oY, fi(E) fu(J,E)
2x1 2x2

= O/f5(J)

Can eliminate all variables that aren't ancestors of query or evidence
variables! infétmidrics
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Summary

Summary

» Inference in Bayesian Networks
» Exact methods: enumeration, variable elimination algorithm
» Computationally intractable in the worst case

> Next time: Approximate inference in Bayesian Networks
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