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Where are we?

Last time . . .

! Using JPD tables for probabilistic inference

! Concepts of absolute and conditional independence

! Bayes’ rule

Today . . .

! Probabilistic Reasoning with Bayesian Networks

Informatics UoE Informatics 2D 112



Introduction
The semantics of Bayesian Networks

Efficient representations of CPDs
Summary

Representing knowledge in an uncertain domain

! Full joint probability distributions can become intractably large
very quickly

! Conditional independence helps to reduce the number of
probabilities required to specify the JPD

! Now we will introduce Bayesian networks (BNs) to
systematically describe dependencies between random variables

! Roughly speaking, BNs are graphs that connect nodes representing
variables with each other whenever they depend on each other
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Bayesian networks

! A BN is a directed acyclic graph (DAG) with nodes annotated
with probability information

! The nodes represent random variables (discrete/continuous)

! Links connect nodes. If there is an arrow from X to Y , we call X
a parent of Y

! Each node Xi has a conditional probability distribution (CPD)
attached to it

! The CPD describes how Xi depends on its parents, i.e. its entries
describe P(Xi |Parents(Xi ))
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Bayesian networks

! Topology of graphs describes conditional independence
relationships

! Intuitively, links describe direct effects of variables on each other
in the domain

! Assumption: anything that is not directly connected does not
directly depend on each other

! In previous dentist/weather example:

Weather Cavity

Toothache Catch
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Example

! New burglar alarm has been fitted, fairly reliable but sometimes
reacts to earthquakes

! Neighbours John and Mary promise to call when they hear alarm

! John sometimes mistakes phone for alarm, and Mary listens to
loud music and sometimes doesn’t hear alarm
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Example – things to note

! No perception of earthquake by John or Mary

! No explicit modelling of phone ring confusing John, or of Mary’s
loud music
(summarised in uncertainty regarding their reaction)

! Actually this uncertainty summarises any kind of failure
! almost impossible to enumerate all possible causes,
! and we don’t have estimates for their probabilities anyway

! Each row in CPTs contains a conditioning case (configuration of
parent values)

! For k parents, 2k possible cases

! We often omit P(¬xi |Parents(Xi )) from CPT for node Xi

(computes as 1− P(xi |Parents(Xi )))
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Representing a full JPD
Constructing Bayesian networks
Conditional independence relations in BNs

The semantics of Bayesian Networks

! Two views:
! BN as representation of JPD (useful for constructing BNs)
! BN as collection of conditional independence statements (useful for

designing inference procedures)

! Every entry P(X1 = x1 ∧ . . . ∧ Xn = xn) in the JPD can be
calculated from a BN (abbreviate by P(x1, . . . , xn))

! P(x1, . . . , xn) =
∏n

i=1 P(xi |parents(Xi ))
! Example:

P(j∧m ∧ a ∧ ¬b ∧ ¬e)
= P(j |a)P(m|a)P(a|¬b ∧ ¬e)P(¬b)P(¬e)
= 0.9× 0.7× 0.001× 0.999× 0.998 = 0.00062

! As before, this can be used to answer any query
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Representing a full JPD
Constructing Bayesian networks
Conditional independence relations in BNs

A method for constructing BNs
! Recall product rule for n variables:

P(x1, . . . , xn) = P(xn|xn−1, . . . , x1)P(xn−1, . . . , x1)

! Repeated application of this yields the so-called chain rule:

P(x1, . . . , xn) = P(xn|xn−1, . . . , x1)P(xn−1|xn−2, . . . , x1) · · ·P(x2|x1)P(x1)

=
n∏

i=1

P(xi |xi−1, . . . , x1)

! With this we obtain P(Xi |Xi−1, . . . ,X1) = P(Xi |Parents(Xi )) as
long as Parents(Xi ) ⊆ {Xi−1, . . . ,X1} (this can be ensured by
labelling nodes appropriately)

! For example, it is reasonable to assume that

P(MaryCalls|JohnCalls,Alarm,Earthquake,Burglary) = P(MaryCalls|Alarm)

Informatics UoE Informatics 2D 119



Introduction
The semantics of Bayesian Networks

Efficient representations of CPDs
Summary

Representing a full JPD
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Compactness and node ordering

! BNs examples of locally structured (sparse) systems:
subcomponents only interact with small number of other
components

! E.g. if 30 nodes and every node depends on 5 nodes, BN will have
30× 25 = 960 probabilities stored in the CPDs, while JPD would
have 230 ≈ 10003 entries

! But remember that this is based on designer’s independence
assumptions!

! Also not trivial to determine good BN structure:

Add “root causes” first, then variables they influence, and so on,
until we reach “leaves” which have no influence on other variables
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Conditional independence relations in BNs

! Have provided “numerical” semantics, but can also look at
(equivalent) “topological” semantics, namely:
1. A node is conditionally independent of its non-descendants, given

its parents
2. A node is conditionally independent of all other nodes, given its

parents, children and children’s parents, i.e. its Markov blanket
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Noisy-OR relationships
BNs with continuous variables

Efficient representation of conditional distributions

! Even the 2k (k parents) conditioning cases that have to be
provided require a great deal of experience and knowledge of the
domain

! Arbitrary relationships are unlikely, often describable by canonical
distributions that fit some standard pattern

! By specifying pattern by a few parameters we can save a lot of
space!

! Simplest case: deterministic node that can be directly inferred
from values of parents

! For example, logical or mathematical functions
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Noisy-OR relationships Generalisation of logical OR

! Any cause can make effect true, but won’t necessarily (effect
inhibited; P(effect|cause) < 1)

! Assumes all causes are listed (leak node can be used to cater for
“miscellaneous” unlisted causes)

! Also assumes inhibitions are mutually conditionally independent
! Whatever inhibits C1 from making E true is independent of what

inhibits C2 from making E true.

! So E is false only if each of its true parents are inhibited and we
can compute this likelihood from product of probabilities for each
individual cause inhibiting E .

! How does this help?
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Noisy-OR relationships
BNs with continuous variables

Example of Noisy-OR
! Fever is caused by Cold , Flu or Malaria and that’s all (!!)
! Inhibitions of Cold , Flu and Malaira are mutually conditionally

independent
! Likelihood that Cold is inhibited from causing Fever is

P(¬fever |cold ,¬flu,¬malaria)
(similarly for other causes)

! Individual inhibition probabilities:

P(¬fever |cold ,¬flu,¬malaria) = 0.6

P(¬fever |¬cold , flu,¬malaria) = 0.2

P(¬fever |¬cold ,¬flu,malaria) = 0.1

! Inhibitions mutually independent, so:

P(¬fever |cold , flu,¬malaria) =
P(¬fever |cold ,¬flu,¬malaria)P(¬fever |¬cold , flu,¬malaria)
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Noisy-OR relationships
BNs with continuous variables

Noisy-OR relationships

! We can construct entire CPT from this information

Cold Flu Malaria P(Fever) P(¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02=0.2 ×0.1
T F F 0.4 0.6
T F T 0.94 0.06=0.6 ×0.1
T T F 0.88 0.12=0.6 ×0.2
T T T 0.988 0.012 = 0.6 × 0.2 × 0.1

! Encodes CPT with k instead of 2k values!
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Noisy-OR relationships
BNs with continuous variables

BNs with continuous variables

! Often variables range over continuous domains

! Discretisation one possible solution but often leads to inaccuracy
or requires a lot of discrete values

! Other solution: use of standard families of probability distributions
specified in terms of a few parameters

! Example: normal/Gaussian distribution N(µ,σ2)(x) defined in
terms of mean µ and variance σ2 (needs just two parameters)

! Hybrid Bayesian Networks use mixture of discrete and
continuous variables (special methods to deal with links between
different types – not discussed here)
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Summary

! Introduced Bayesian Networks as a structured way of reasoning
under uncertainty using probabilities and independence

! Defined their semantics in terms of JPD representation, and
conditional independence statements

! Gave numerical and topological interpretation of semantics

! Talked about issues of efficient representation of CPTs

! Discussed continuous variables and hybrid networks

! Next time: Exact Inference in Bayesian Networks
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