Informatics 2D — Reasoning and Agents
Semester 2, 2019-2020

Alex Lascarides
alex@inf.ed.ac.uk

] School of _ o
informatics

Lecture 17 — State-Space Search and Partial-Order Planning
27th February 2020

] School of _ e
informatics

Informatics UoE Informatics 2D 1

Introduction

Where are we?

Last time ...
» we defined the planning problem
» discussed problem with using search and logic in planning
» introduced representation languages for planning
» |ooked at blocks world example
Today ...

» State-space search and partial-order planning

Informatics UoE Informatics 2D

o School of _ e
informatics

19

Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

Planning with state-space search

» Most straightforward way to think of planning process:
search the space of states using action schemata

» Since actions are defined both in terms of preconditions and
effects we can search in both directions
» Two methods:
1. forward state-space search: Start in initial state; consider action
sequences until goal state is reached.

2. backward state-space search: Start from goal state; consider
action sequences until initial state is reached

] School of _ e
informatics

Informatics UoE Informatics 2D 20

Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

Planning with state-space search

At(P,, B)
Fly(Py, A, B) Al(Py, A)
Al(Py, A)
(a)
Al(Ps, A) —
At(PQJ B)
At(P17 A)
AP, B | lFy. A B
Al(P,, B
Al(P», B)
Al(Ps, A)

] School of _ e
informatics

Informatics UoE Informatics 2D 21

Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

Forward state-space search

» Also called progression planning

» Formulation of planning problem:

» Initial state of search is initial state of planning problem
(=set of positive literals)

» Applicable actions are those whose preconditions are satisfied

» Single successor function works for all planning problems
(consequence of action representation)

» Goal test = checking whether state satisfies goal of planning
problem

» Step cost usually 1, but different costs can be allowed

] School of _ e
informatics

Informatics UoE Informatics 2D 22

Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

Forward state-space search

>
>

Search space is finite in the absence of function symbols

Any complete graph search algorithm (like A*) will be a complete
graph planning algorithm

Forward search does not solve problem of irrelevant actions (all
actions considered from each state)

Efficiency depends largely on quality of heuristics

Example:

» Air cargo problem, 10 airports with 5 planes each, 20 pieces of
cargo

» Task: move all 20 pieces of cargo at airport A to airport B

» Each of 50 planes can fly to 9 airports, each of 200 packages can
be unloaded or loaded (individually)

» So approximately 10K executable actions in each state
(50%x9 x 200)

>

Lots of irrelevant actions get considered, although solution is triviallssimatics

Informatics UoE Informatics 2D 23

Forward state-space search

Planning with state-space search Backward state-space search

Heuristics for state-space search

Backward state-space search

» In normal search, backward approach hard because goal described
by a set of constraints (rather than being listed explicitly)

» Problem of how to generate predecessors, but planning
representations allow us to consider only relevant actions

» Exclusion of irrelevant actions decreases branching factor
» In example, only about 20 actions working backward from goal

» Regression planning = computing the states from which
applying a given action leads to the goal

» Must ensure that actions are consistent, i.e. they don't undo any
desired literals

] School of _ e
informatics

Informatics UoE Informatics 2D 24

Planning with state-space search PR SIS SR SR

Backward state-space search
Heuristics for state-space search

Air cargo domain example

» Goal can be described as
At(Cl, B) A At(CQ, B) N ... At(CQO, B)

» To achieve At(Cy, B) there is only one action, Unload(Cy, p, B) (p
unspecified)

v

Can do this action only if its preconditions are satisfied.

» So the predecessor to the goal state must include
In(Cy, p) A\ At(p, B), and should not include At(Cy, B) (otherwise
irrelevant action)

» Full predecessor:

In(Cy,p) N At(p, B) A ... N At(Cxo, B)

» [oad(Ci, p) would be inconsistent (negates At(Cy, B))

] School of _ e
informatics

Informatics UoE Informatics 2D 25

Planning with state-space search PR SIS SR SR

Backward state-space search
Heuristics for state-space search

Backward state-space search

» General process of constructing predecessors for backward search
given goal description G, relevant and consistent action A:

» Any positive effects of A that appear in G are deleted
» Each precondition of A is added unless it already appears

» Any standard search algorithm can be used, terminates when
predecessor description is satisfied by initial (planing) state

» First-order case may require additional substitutions which must
be applied to actions leading from state to goal

] School of _ e
informatics

Informatics UoE Informatics 2D 26

Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

Heuristics for state-space search

» Two possibilities:

1. Divide and Conquer (subgoal decomposition)
2. Derive a Relaxed Problem

» Subgoal decomposition is ...

> optimistic (admissible) if negative interactions exist (e.g. subplan
deletes goal achieved by other subplan)

» pessimistic (inadmissible) if positive interactions exist (e.g. subplans
contain redundant actions)

» Relaxations:

» drop all preconditions (all actions always applicable, combined with
subgoal independence makes prediction even easier)

» remove all negative effects (and count minimum number of actions
so that union satisfies goals)

» empty delete lists approach (involves running a simple planning
problem to compute heuristic value)

o School of _ e
informatics

Informatics UoE Informatics 2D 27

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning

» State-space search planning algorithms consider totally ordered
sequences of actions

» Better not to commit ourselves to complete chronological ordering
of tasks (least commitment strategy)

» Basic idea:

1. Add actions to a plan without specifying which comes first unless
necessary
2. Combine ‘independent’ subsequences afterwards

» Partial-order solution will correspond to one or several
linearisations of partial-order plan

» Search in plan space rather than state spaces (because your
search is over ordering constraints on actions, as well as transitions
among states).

o School of _ e
informatics

Informatics UoE Informatics 2D 28

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Example: Put your socks and shoes on

Partial-Order Plan: Total-Order Plans:
Start Start Start Start Start Start Start
/ \ Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Left Right
Sock Sock y Y Y Y Y Y
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
LeftSockOn RightSockOn
. Right Left Right Left Left Right
Left Right
Sioe Slhgoe Shoe Shoe Shoe Shoe Sock Sock
| Y Y Y Y Y
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
LeftShoeOn, RightShoeOn
Finish Finish Finish Finish Finish Finish Finish

] School of _ e
informatics

Informatics UoE Informatics 2D 29

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning (POP) as a search problem

Define POP as search problem over plans consisting of:

» Actions; initial plan contains dummy actions Start (no
preconditions, effect=initial state) and Finish (no effects,
precondition=goal literals)

» Ordering constraints on actions A < B (A must occur before B);
contradictory constraints prohibited

» Causal links between actions A 5 B express A achieves p for B
(p precondition of B, effect of A, must remain true between A and
B); inserting action C with effect =p (A < C and C < B) would
lead to conflict

» Open preconditions: set of conditions not yet achieved by the
plan (planners try to make open precondition set empty without
introducing contradictions)

] School of _ e
informatics

Informatics UoE Informatics 2D 30

The POP algorithm

Example

Partial-order planning Wl e ot e sl s

The POP algorithm

» Final plan for socks and shoes example (without trivial ordering

constraints):
Actions: {RightSock, RightShoe, LeftSock, LeftShoe, Start, Finish}
Orderings: {RightSock < RightShoe, LeftSock < LeftShoe}

Links: {RightSock ightogckOrn RightShoe,
LeftSock LeftSOCkon LeftShoe,
RightShoe R’g”ts’”eo” Finish,

LeftShoe LeftShon” Finish}
Open preconditions: {}

» Consistent plan = plan without cycles in orderings and conflicts
with links

Solution = consistent plan without open preconditions

vy

Every linearisation of a partial-order solution is a total-order
solution (implications for execution!) infoiiatics

Informatics UoE Informatics 2D 31

The POP algorithm

Example

Partial-order planning Wl e ot e sl s

The POP algorithm

» Initial plan:
Actions: {Start, Finish}, Orderings: {Start < Finish},

Links: {}, Open preconditions: Preconditions of Finish

» Pick p from open preconditions on some action B, generate a
consistent successor plan for every A that achieves p

» Ensuring consistency:

1. Add A5 B and A < B to plan. If A new, add A and Start < A
and A < Finish to plan

2. Resolve conflicts between the new link and all actions and between
A (if new) and all links as follows:

If conflict between A > Band C, add B<Cor C < A

» Goal test: check whether there are open preconditions
(only consistent plans are generated)

] School of _ e
informatics

Informatics UoE Informatics 2D 32

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning example (1)
Init(At(Flat, Axle) N At(Spare, Trunk)). Goal(At(Spare, Axle)).
Action(Remove(Spare, Trunk),

PRECOND:At(Spare, Trunk)

ErrECT: —At(Spare, Trunk) N\ At(Spare, Ground))
Action(Remove(Flat, Axle),

PRECOND: At(Flat, Axle)

ErrECT: —~At(Flat, Axle) A At(Flat, Ground))
Action(PutOn(Spare, Axle),

PRECOND:At(Spare, Ground) N —At(Flat, Axle)

ErrFECT: —At(Spare, Ground) N\ At(Spare, Axle))
Action(LeaveOvernight, =~ PRECOND:

EFFECT: —At(Spare, Ground) A —At(Spare, Axle) N —At(Spare, Trunk)

N —At(Flat, Ground) A =At(Flat, Axle))

] School of _ e
informatics

Informatics UoE Informatics 2D 33

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning example (2)

» Pick (only) open precondition At(Spare, Axle) of Finish
Only applicable action = PutOn(Spare, Axle)

» Pick At(Spare, Ground) from PutOn(Spare, Axle)
Only applicable action = Remove(Spare, Trunk)

» Situation after two steps:

At(Spare, Trunk)| Remove(Spare, Trunk) \

Al(Spare, Trunk) Al(Spare,Groun .
Start P (5P ? PutOn(Spare,Axle) |- At(Spare,Axie)| Finish

At(Flat, Axle) — At(Flat, Axle)

o School of _ e
informatics

Informatics UoE Informatics 2D 34

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning example (3)

» Pick —At(Flat, Axle) precondition of PutOn(Spare, Axle)
Choose LeaveOvernight, effect —At(Spare, Ground)
» Conflict with link

At(Spare,Ground
Remove(Spare, Trunk) (Spare)

PutOn(Spare, Axle)

» Resolve by adding LeaveOvernight < Remove(Spare, Trunk)
Why is this the only solution?

At(Spare, Trunk)| Remove(Spare, Trunk)
/ \\
At(Spare, Trunk) / Al(Spare,Ground) —
Start ,’ PutOn(Spare,Axle) HB»At(Spare,Axle)| Finish
At(Flat,Axle) ; — At(Flat, Axle)
/
/
/
/
/ — Al(Flat,Axle)
L — At(Flat,Ground)

LeaveOvernight | Af(Spare,Axle)
~ A{(Spare, Ground)
- A{(Spare, Trunk)

] School of _ e
informatics

Informatics UoE Informatics 2D 35

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning example (4)

» Remaining open precondition At(Spare, Trunk), but conflict
between Start and —At(Spare, Trunk) effect of LeaveOvernight

» No ordering before Start possible or after Remove(Spare, Trunk)
possible

» No successor state, backtrack to previous state and remove
LeaveOvernight, resulting in this situation:

At(Spare, Trunk)| Remove(Spare, Trunk) \

Af(Spare, Trunk) Af(Spare,Groun . .
Start (5P J PutOn(Spare,Axle) —At(Spare,Axle)| Finish
Al(Flat,Axle) - Af(Flat,Axle)

] School of _ e
informatics

Informatics UoE Informatics 2D 36

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning example (5)

» Now choose Remove(Flat, Axle) instead of LeaveOvernight

» Next, choose At(Spark, Trunk) precondition of
Remove(Spare, Trunk)
Choose Start to achieve this

» Pick At(Flat, Axle) precondition of Remove(Flat,Axle), choose
Start to achieve it

» Final, complete, consistent plan:

At(Spare, Trunk)| Remove(Spare, Trunk) \

At(Spare, Trunk) At(Spare,Groun .
Start P K PutOn(Spare,Axle) #=-At(Spare,Axie)| Finish
Aft(Flat,Axle) 1 At(Flat,Axle)

At(Flat Axle) | Remove(Flat,Axle)

] School of _ e
informatics

Informatics UoE Informatics 2D 37

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Dealing with unbound variables

» In first-order case, unbound variables may occur during planning
process
» Example:
Action(Move(b, x, y),

PRECOND:On(b, x) A Clear(b) N Clear(y)
EFFECT: On(b, y) A Clear(x) A =On(b, x) N\ —Clear(y))

achieves On(A, B) under substitution {b/A,y/B}
» Applying this substitution yields
Action(Move(A, x, B),
PRECOND: On(A, x) A Clear(A) A Clear(B)
EFFECT:On(A, B) A Clear(x) A =0On(A, x) A =Clear(B))

and x is still unbound (another side of the least commitment
approach) infotatics

Informatics UoE Informatics 2D 38

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Dealing with unbound variables

» Also has an effect on links, e.g. in example above
Move(A, x, B) *" 3% Finish would be added

» |f another action has effect =On(A, z) then this is only a conflict if
z=28B

» Solution: insert inequality constraints (in example: z £ B) and
check these constraints whenever applying substitutions

» Remark on heuristics: Even harder than in total-order planning,
e.g. adapt most-constrained-variable approach from CSPs

] School of _ e
informatics

Informatics UoE Informatics 2D 39

Summary
» State-space search approaches (forward/backward)
» Heuristics for state-space search planning
» Partial-order planning
» The POP algorithms
» POP as search in planning space
» POP example
» POP with unbound variables
» Next time: Planning and Acting in the Real World |

Informatics UoE Informatics 2D

o School of _ e
informatics

40

