Informatics 2D — Reasoning and Agents
Semester 2, 2019-2020

Alex Lascarides
alex@inf.ed.ac.uk

] School of _ o
informatics

Lecture 16 — Introduction to Planning
25th February 2020

] School of _ e
informatics

Informatics UoE Informatics 2D 1

Introduction

Where are we?

The first two blocks of the course dealt with ...
» Basic notions of agency
» Intelligent problem-solving
» Heuristic search, constraints
» Logic & logical reasoning
» Reasoning about actions and time
In the remainder of the course we will talk about ...
» Planning
» Uncertainty

o School of _ e
informatics

Informatics UoE Informatics 2D 2

Introduction

What is planning?

» Planning is the task of coming up with a sequence of actions that
will achieve a goal

» \We are only considering classical planning in which environments
are

fully observable (accessible),

deterministic,

finite,

static (up to agents’ actions),

» discrete (in actions, states, objects and events).

vvyyvyy

» (Lifting some of these assumptions will be the subject of the
“uncertainty” part of the course)

] School of _ e
informatics

Informatics UoE Informatics 2D 3

Introduction

Why planning?

» So far we have dealt with two types of agents:

1. Search-based problem-solving agents
2. Logical planning agents

» Do these techniques work for solving planning problems?

o School of _ e
informatics

Informatics UoE Informatics 2D 4

Introduction

Why planning?

» Consider a search-based problem-solving agent in a robot shopping
world
» Task: Go to the supermarket and get milk, bananas and a cordless

drill
» \What would a search-based agent do?

Talk to Parrot

Go To Pet Store Buy a Dog
Go To School Go To Class
Start Go To Supermarket N Buy Tuna Fish
Go To Sleep Buy Arugula
- =
Read A Book Buy Milk
>) — " — Finish
Sit in Chair Sit Some More
Etc. Etc. ... o \ Read A Book

] School of _ e
informatics

Informatics UoE Informatics 2D 5

Introduction

Problems with search

» No goal-directedness.

» No problem decomposition into sub-goals that build on each other

» May undo past achievements
» May go to the store 3 times!

» Simple goal test doesn't allow for the identification of milestones

» How do we find a good heuristic function?
How do we model the way humans perceive complex goals and the
quality of a plan?

] School of _ e
informatics

Informatics UoE Informatics 2D 6

Introduction

How about logic & deductive inference?

>

>

Generally a good idea, allows for “opening up” representations of
states, actions, goals and plans

If Goal = Have(Bananas) N\ Have(Milk) this allows achievement of
sub-goals (if independent)

Current state can be described by properties in a compact way
(e.g. Have(Drill) stands for hundreds of states)

Allows for compact description of actions, for example
Object(x) = Can(a, Grab(x))

Allows for representing a plan hierarchically,

e.g. GoTo(Supermarket) = Leave(House) N
ReachlLocationOf (Supermarket) A Enter(Supermarket) then
decompose further into sub-plans

] School of _ e
informatics

Informatics UoE Informatics 2D 7

Introduction

How about logic & deductive inference?

» Problems:

1. In its general form either awkward (propositional logic) or
tractability problems (first-order logic), high complexity
2. If pis a sequence that achieves the goal,
then so is [a,a~ | p]!

» Solutions: We need

1. To reduce comlpexity to allow scaling up.
2. To allow reasoning to be guided by plan ‘quality’/efficiency.

» Do 1. today; 2. next time.

] School of _ e
informatics

Informatics UoE Informatics 2D 8

Representing planning problems PDDL

Representing planning problems

» Need a language expressive enough to cover interesting problems,
restrictive enough to allow efficient algorithms.
» Planning Domain Definition Language or PDDL

» PDDL will allow you to express:

1. states
2. actions: a description of transitions between states
3. and goals: a (partial) description of a state.

] School of _ e
informatics

Informatics UoE Informatics 2D 9

Representing planning problems PDDL

Representing States and Goals in PDDL

» States represented as conjunctions of propositional or
function-free first order positive literals:

» Happy A Sunshine, At(Plane;, Melbourne) N\ At(Planey, Sydney)

» So these aren’t states:

» At(x,y) (no variables allowed),
Love(Father(Fred), Fred) (no function symbols allowed)
—Happy (no negtion allowed).

Closed-world assumption!

» A goal is a partial description of a state, and you can use
negation, variables etc. to express that description.

» —Happy, At(x,SFO), Love(Father(Fred), Fred) . ..

o School of _ e
informatics

Informatics UoE Informatics 2D 10

Representing planning problems PDDL

Actions in PDDL

Action(Fly(p, from, to),
PRECOND:At(p, from) A Plane(p) N Airport(from) A Airport(to)
ErrFECT:—At(p, from) N\ At(p, to))

» Actually action schemata, as they may contain variables

» Action name and parameter list serves to identify the action
» Precondition: defines states in which action is executable:
» Conjunction of positive and negative literals, where all variables
must occur in action name.
» Effect: defines how literals in the input state get changed
(anything not mentioned stays the same).
» Conjunction of positive and negative literals, with all its variables
also in the preconditions.
» Often positive and negative effects are divided into add list and
delete list

] School of _ e
informatics

Informatics UoE Informatics 2D 11

Representing planning problems PDDL

The semantics of PDDL: States and their Descriptions

— At(Pl, SFO) iff At(Pl, SFO) cSs

— —IAt(Pl, SFO) iff At(Pl, SFO) s

= ¢(x) iff there is a ground term d such that s = ¢[x/d].
= oA\ iff s =¢ and s =9

nh 1 u un

] School of _ e
informatics

Informatics UoE Informatics 2D 12

Representing planning problems PDDL

The Semantics of PDDL: Applicable Actions

» Any action is applicable in any state that satisfies the
precondition with an appropriate substitution for parameters.

» Example: State

At(Py, Melbourne) N\ At(P,, Sydney) A Plane(P1) A Plane(P5)
N Airport(Sydney) A Airport(Melbourne) A Airport(Heathrow)

satisfies
At(p, from) A Plane(p) A Airport(from) A Airport(to)
with substitution (among others)

{p/P>, from/Sydney, to/Heathrow }

] School of _ e
informatics

Informatics UoE Informatics 2D 13

Representing planning problems PDDL

The semantics of PDDL: The Result of an Action

» Result of executing action a in state s is state s’ with any positive
literal P in a's EFFECTs added to the state and every negative
literal =P removed from it (under the given substitution) .

» In our example s’ would be

At(Py, Melbourne) N\ At(P», Heathrow) A Plane(P1) A Plane(P»)
N Airport(Sydney) A Airport(Melbourne) A Airport(Heathrow)

» “PDDL assumption”: every literal not mentioned in the effect
remains unchanged (cf. frame problem)

» Solution = action sequence that leads from the initial state to a
state that satisfies the goal.

] School of _ e
informatics

Informatics UoE Informatics 2D 14

Blocks world example

Blocks world example

>
>
>
>
>

Given: A set of cube-shaped blocks sitting on a table
Can be stacked, but only one on top of the other
Robot arm can move around blocks (one at a time)

Goal: to stack blocks in a certain way
Formalisation in PDDL:

» On(b, x) to denote that block b is on x (block/table)
» Move(b, x, y) to indicate action of moving b from x to y
» Precondition for this action: nothing must be stacked on x:

Clear(x).

Informatics UoE Informatics 2D

] School of _ e
informatics

15

Blocks world example

Blocks world example

» Action schema:
Action(Move(b, x, y),
PRECOND:On(b, x) A Clear(b) N Clear(y)
EFFECT: On(b, y) A Clear(x) A =On(b, x) A\ —Clear(y))

» Problem: when x = Table or y = Table we infer that the table is
clear when we have moved a block from it (not true) and require
that table is clear to move something on it (not true)

» Solution: introduce another action
Action(MoveToTable(b, x),

PRECOND:On(b, x) A Clear(b)
EFFECT: On(b, Table) N\ Clear(x) A =On(b, x))

] School of _ e
informatics

Informatics UoE Informatics 2D 16

Blocks world example

Does this Work?

» Interpret Clear(b) as “there is space on b to hold a block” (thus
Clear(Table) is always true)

» But without further modification, planner can still use
Move(b, x, Table):
» Needlessly increases search space
(not a big problem here, but can be)

» So part of solution is to also add Block(b) A Block(y) to
precondition of Move

] School of _ e
informatics

Informatics UoE Informatics 2D 17

Summary

>
>
>
>
>

Defined the planning problem

Discussed problems with search /logic

Introduced PDDL: a special representation language for planning
Blocks world example as a famous application domain

Next time: Algorithms for planning!
State-Space Search and Partial-Order Planning

o School of _ e
informatics

Informatics UoE Informatics 2D 138

