
Informatics 2D ⋅ Agents and Reasoning ⋅ 2019/2020

Lecture 14 ⋅ Situation Calculus

Claudia Chirita

School of Informatics, University of Edinburgh

13th February 2020

Based on slides by: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle



Outline

• Planning
• Situations
• Frame problem

2 / 24



Using Logic to Plan

We need ways of representing
• the world
• the goal
• how actions change the world

We haven’t said much about changing the world.
Difficulty After an action, new things are true, and some
previously true facts are no longer true.

3 / 24



Situations

Situations extend the concept of a state by additional
logical terms

– consist of initial situation (usually called 𝑆଴) and all
situations generated by applying an action to a situation

Providing facts about situations
– by relating predicates to situations

e.g. instead of saying just 𝑂𝑛(𝐴, 𝐵), say (somehow)
𝑂𝑛(𝐴, 𝐵) in situation 𝑆଴

Actions are thus
– performed in a situation, and
– produce new situations with new facts
– e.g. Forward and Turn(Right)

4 / 24



Representing Predicates Relative to a
Situation

1. Can add an argument for a situation to each predicate
that can change.

– e.g. instead of On(𝐴, 𝐵), write On(𝐴, 𝐵, 𝑆଴)

2. Alternatively, introduce a predicate Holds

– On etc. become functions
– e.g. Holds(On(𝐴, 𝐵), 𝑆଴)

– What do things like On(𝐴, 𝐵) mean now?
A set of situations in which 𝐴 is on 𝐵.

5 / 24



How This Will Work

Before some action, we might have in our KB

• On(𝐴, 𝐵, 𝑆଴)

• On(𝐵,Table, 𝑆଴)

A
B

After an action that moves A to the table, say, we add

• Clear(𝐵, 𝑆ଵ)

• On(𝐴,Table, 𝑆ଵ) A B

All these propositions are true. We have dealt with the issue
of change, by keeping track of what is true when.

6 / 24



Same Thing, Slightly Different Notation

Before
• Holds(On(𝐴, 𝐵), 𝑆଴)

• Holds(On(𝐵,Table), 𝑆଴)

A
B

After, add

• Holds(Clear(𝐵), 𝑆ଵ)

• Holds(On(𝐴,Table), 𝑆ଵ) A B

7 / 24



Representing Actions

We need to represent
– results of doing an action
– conditions that need to be in place to perform an action

For convenience, we will define functions to abbreviate actions
– e.g. Move(𝐴, 𝐵) denotes the action type of moving 𝐴 onto 𝐵

– these are action types, because actions themselves are
specific to time, etc.

Now, introduce a function Result, designating “the situation
resulting from doing an action type in some situation”.

– e.g. Result(Move(𝐴, 𝐵), 𝑆଴) means “the situation resulting
from doing an action of type Move(𝐴, 𝐵) in situation 𝑆଴”.

8 / 24



How This Works

Keep in mind that things like
Result(Move(𝐴, 𝐵), 𝑆଴)

are terms and denote situations.
They can appear anywhere we would expect a situation.

So we can say things like
𝑆ଵ = Result(Move(𝐴, 𝐵), 𝑆଴)

On(𝐴, 𝐵,Result(Move(𝐴, 𝐵), 𝑆଴)) ≡ On(𝐴, 𝐵, 𝑆ଵ)

Alternatively,
Holds(On(𝐴, 𝐵),Result(Move(𝐴, 𝐵), 𝑆଴))

9 / 24



Axiomatising Actions

We can describe the results of actions, together with their
preconditions.
e.g. “If nothing is on 𝑥 and 𝑦, then one can move 𝑥 to on top

of 𝑦, in which case 𝑥 will then be on 𝑦.”
∀𝑥, 𝑦, 𝑠.Clear(𝑥, 𝑠) ∧ Clear(𝑦, 𝑠) → On(𝑥, 𝑦,Result(Move(𝑥, 𝑦), 𝑠))

Alternatively,
∀𝑥, 𝑦, 𝑠.Holds(Clear(𝑥), 𝑠) ∧ Holds(Clear(𝑦), 𝑠)

→ Holds(On(𝑥, 𝑦),Result(Move(𝑥, 𝑦), 𝑠))

This is an effect axiom.
It includes a precondition as well.

10 / 24



Situation Calculus

This approach is called the situation calculus.

We axiomatise all our actions, then use a general theorem
prover to prove that a situation exists in which our goal is true.

The actions in the proof would comprise our plan.

11 / 24



Example

KB
On(𝐴,Table, 𝑆଴)

On(𝐵, 𝐶, 𝑆଴)

On(𝐶,Table, 𝑆଴)

Clear(𝐴, 𝑆଴)

Clear(𝐵, 𝑆଴)

+ axioms about actions

Goal
∃𝑠ᇱ.On(𝐴, 𝐵, 𝑠ᇱ)

𝑆଴
B

A C

Table

12 / 24



What happens?

• We want to prove On(𝐴, 𝐵, 𝑠ᇱ) for some 𝑠ᇱ.
– Find axiom
∀𝑥, 𝑦, 𝑠.Clear(𝑥, 𝑠) ∧ Clear(𝑦, 𝑠)

→ On(𝑥, 𝑦,Result(Move(𝑥, 𝑦), 𝑠))

– Goal would be true if we could prove
Clear(𝐴, 𝑠) ∧ Clear(𝐵, 𝑠) by backward chaining.

– But both are true in 𝑆଴, so we can conclude
On(𝐴, 𝐵,Result(Move(𝐴, 𝐵), 𝑆଴))

• We are done!
We look at the proof and see only one action, Move(𝐴, 𝐵),
which is executed in situation 𝑆଴, so this is our plan.

13 / 24



Example ⋅ Same Situation, Harder Goal1

KB
On(𝐴,Table, 𝑆଴)

On(𝐵, 𝐶, 𝑆଴)

On(𝐶,Table, 𝑆଴)

Clear(𝐴, 𝑆଴)

Clear(𝐵, 𝑆଴)

+ axioms about actions

Goal
∃𝑠ᇱ.On(𝐴, 𝐵, 𝑠ᇱ) ∧ On(𝐵, 𝐶, 𝑠ᇱ)

𝑆଴
B

A C

Table

భIt’s not really harder, ஻ is already on ஼, and we just showed how to put ஺ on ஻.

14 / 24



With Goal On(𝐴, 𝐵, 𝑠′) ∧ On(𝐵, 𝐶, 𝑠′)

• Suppose we try to prove the first subgoal, On(𝐴, 𝐵, 𝑠ᇱ).
– Use same axiom
∀𝑥, 𝑦, 𝑠.Clear(𝑥, 𝑠) ∧ Clear(𝑦, 𝑠)

→ On(𝑥, 𝑦,Result(Move(𝑥, 𝑦), 𝑠))

– Again, by chaining, we can conclude
On(𝐴, 𝐵,Result(Move(𝐴, 𝐵), 𝑆଴))

– Abbreviating Result(Move(𝐴, 𝐵), 𝑆଴) as 𝑆ଵ, we have
On(𝐴, 𝐵, 𝑆ଵ).

• Substituting 𝑆ଵ for 𝑠ᇱ in our other subgoal makes that On(𝐵, 𝐶, 𝑆ଵ).
If this were true, we are done.

• But we have no reason to believe this is true!
• Sure, On(𝐵, 𝐶, 𝑆଴), but how does the planner know this is still

true, i.e., On(𝐵, 𝐶, 𝑆ଵ)?
• In fact, it doesn’t, so it fails to find an answer!

15 / 24



The Frame Problem

We have failed to express the fact that everything that
isn’t changed by an action should really stay the same.

Can fix by adding frame axioms.
∀𝑥, 𝑠.Clear(𝑥, 𝑠) → Clear(𝑥,Result(Paint(𝑥), 𝑠))

…

There are lots of these!

Is this a big problem?

16 / 24



Better Frame Axioms

• Can fix with neater formulation:
∀𝑥, 𝑦, 𝑠, 𝑎.On(𝑥, 𝑦, 𝑠) ∧ (∀𝑧.𝑎 = Move(𝑥, 𝑧) → 𝑦 = 𝑧)

→ On(𝑥, 𝑦,Result(𝑎, 𝑠))

• Can combine with effect axioms to get successor-state axioms:
∀𝑥, 𝑦, 𝑠, 𝑎.On(𝑥, 𝑦,Result(𝑎, 𝑠)) ↔

On(𝑥, 𝑦, 𝑠) ∧ (∀𝑧.𝑎 = Move(𝑥, 𝑧) → 𝑦 = 𝑧)

∨(Clear(𝑥, 𝑠) ∧ Clear(𝑦, 𝑠) ∧ 𝑎 = Move(𝑥, 𝑦))

17 / 24



How Does This Help Our Example?

• We want to prove On(𝐵, 𝐶,Result(Move(𝐴, 𝐵), 𝑆଴)) given that
On(𝐵, 𝐶, 𝑆଴).

• Axiom says ∀𝑥, 𝑦, 𝑠, 𝑎.On(𝑥, 𝑦,Result(𝑎, 𝑠)) ↔

On(𝑥, 𝑦, 𝑠) ∧ (∀𝑧.𝑎 = Move(𝑥, 𝑧) → 𝑦 = 𝑧)

∨(Clear(𝑥, 𝑠) ∧ Clear(𝑦, 𝑠) → 𝑎 = Move(𝑥, 𝑦))

• So we need to show
On(𝐵, 𝐶, 𝑆଴) ∧ (∀𝑧.Move(𝐴, 𝐵) = Move(𝐵, 𝑧) → 𝐶 = 𝑧) is true:

– The first conjunct is in the KB.
– The second one is true since actions are the same iff they

have the same name and involve the exact same objects∗:
𝐴(𝑥ଵ, … , 𝑥௠) = 𝐴(𝑦ଵ, … , 𝑦௠) iff 𝑥ଵ = 𝑦ଵ, … , 𝑥௠ = 𝑦௠.
So Move(𝐴, 𝐵) = Move(𝐵, 𝑧) is false.

∗Another assumption in KB: ஺(௫భ, … , ௫೘) ஷ ஻(௬భ, … , ௬೙).
These are known as Unique Action Axioms.

18 / 24



Refutation Theorem Proving
(Dual) Skolemisation

Suppose ∀𝑥.∃𝑦.𝐺(𝑥, 𝑦) is the goal in resolution refutation.

We need to negate the goal:
¬∀𝑥.∃𝑦.𝐺(𝑥, 𝑦) ≡ ∃𝑥.∀𝑦.¬𝐺(𝑥, 𝑦)

Then skolemise (i.e drop the existential quantifier):
¬𝐺(𝑋଴, 𝑦)

Intuition
𝑦 is to be unified to construct witness.
𝑋଴ must not be instantiated.

19 / 24



KB and Axioms as Clauses

Variables 𝑎, 𝑥, 𝑦, 𝑧, 𝑠

Constants 𝐴, 𝐵, 𝐶, 𝑆଴

Initial State
On(𝐴, Table, 𝑆଴)

On(𝐵, 𝐶, 𝑆଴)

On(𝐶, Tabl𝑒, 𝑆଴)

Clear(𝐴, 𝑆଴)

Clear(𝐵, 𝑆଴)

(neg.) Goal
¬On(𝐴, 𝐵, 𝑠ᇱ) ∨ ¬On(𝐵, 𝐶, 𝑠ᇱ)

20 / 24



KB and Axioms as Clauses

Effect Axiom
¬Clear(𝑥, 𝑠) ∨ ¬Clear(𝑦, 𝑠) ∨ On(𝑥, 𝑦,Result(Move(𝑥, 𝑦), 𝑠))

Skolem function
Frame Axioms ↙

¬On(𝑥, 𝑦, 𝑠) ∨ 𝑎 = Move(𝑥, 𝑍(𝑥, 𝑦, 𝑠, 𝑎)) ∨ On(𝑥, 𝑦,Result(𝑎, 𝑠))

¬On(𝑥, 𝑦, 𝑠) ∨ ¬𝑦 = 𝑍(𝑥, 𝑦, 𝑧, 𝑠, 𝑎) ∨ On(𝑥, 𝑦,Result(𝑎, 𝑠))

Unique Action Axioms
¬Move(𝐴, 𝐵) = Move(𝐵, 𝑧)

Unique Name Axiom
¬𝐶௜ = 𝐶௝ for every pair of distinct constants 𝐶௜ and 𝐶௝ in KB.

21 / 24



Resolution Refutation

22 / 24



Frame problem partially solved

• This solves the representational part of the frame problem.
• Still have to compute that everything that was true and

wasn’t changed is still true.
• Inefficient (as is general theorem proving).
• Solution: Special purpose representations, special purpose

algorithms, called planners.

23 / 24



Summary

• Planning
• Situations
• Frame problem

24 / 24


